[1]谢锦升,杨智杰,曾宏达,等.侵蚀红壤植被恢复过程中土壤呼吸与土壤性质的关系[J].福建林学院学报,2009,29(04):320-325.
点击复制

侵蚀红壤植被恢复过程中土壤呼吸与土壤性质的关系()
分享到:

《福建林学院学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
29
期数:
2009年04期
页码:
320-325
栏目:
出版日期:
2009-10-15

文章信息/Info

文章编号:
1001-389X(2009)04-0320-06
作者:
谢锦升12 杨智杰12 曾宏达12 高人12 陈光水12 杨玉盛12
(1.湿润亚热带生态—地理过程省部共建教育部重点实验室,福建 福州 350007;2.福建师范大学地理科学学院,福建 福州 350007)
关键词:
侵蚀地 红壤 生态恢复 土壤呼吸 土壤性质
分类号:
S154.4
文献标志码:
A
摘要:
土壤性质是影响土壤呼吸的重要因素。研究了植被恢复对红壤侵蚀裸地土壤呼吸的影响,并探讨了土壤呼吸速率与土壤性质的关系。红壤侵蚀裸地土壤呼吸年平均速率仅0.43 μmol·m-2·s-1,恢复为百喜草地、板栗园和马尾松林后土壤呼吸速率增加了3.3-6.1倍,但仍显著低于次生林的土壤呼吸速率。土壤呼吸速率与土壤表层0-20 cm内有机C、全N、有效性N、C/N均有显著的正相关关系,但除C/N外,其相关性均随取样深度增加而下降。而土壤呼吸速率与土壤全P、有效P、全K、速效K没有显著相关关系,与土壤容重和土壤表层团聚体破坏率则呈显著负相关。因此,在红壤严重侵蚀地恢复过程中,土壤性质的恢复尤其是C、N和表层土壤结构是决定土壤呼吸速率大小的重要因素。

参考文献/References:

[1] Albrecht A, Kandji S T. Carbon sequestration in tropical agroforestry systems[J]. Agriculture, Ecosystems and Environment, 2003,99:15-27.
[2] Grünzweig J M, Lin T, Rotenberg E, et al. Carbon sequestration in aridland forest[J]. Global Change Biology, 2003,9:791-799.
[3] Bolin B, Sukumar R. Global Perspective[C]∥Watson R T, Noble I R, Bolin B, et al. IPCC Special Report: Land Use, LandUse Change, and Forestry. UK, Cambridge: Cambridge University Press, 2000:23-51.
[4] 杨玉盛,董彬,谢锦升,等.森林土壤呼吸及其对全球变化的响应[J].生态学报,2004,24(3):583-591.
[5] Ryan M G, Law B E. Interpreting, measuring, and modeling soil respiration[J]. Biogeochemistry, 2005,73:3-27.
[6] 谢锦升,杨玉盛,陈光水,等.严重侵蚀红壤封禁管理后土壤性质的变化[J].福建林学院学报,2002,22(3):236-239.
[7] 谢锦升,杨玉盛,陈光水,等.植被恢复对退化红壤团聚体稳定性及碳分布的影响[J].生态学报,2008,28(2):702-709.
[8] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
[9] Rodeghiero M, Cescatti A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps[J]. Global Change Biology, 2005,11:1 024-1 041.
[10] Smith V R. Soil respiration and its determinants on a subAntarctic island[J]. Soil Biology and Biochemistry, 2003,35:77-91.
[11] Kang S, Doh S, Lee D, et al. Topographic and climatic controls on soil respiration in six temperate mixedhardwood forest slopes, Korea[J]. Global Change Biology, 2003,9:1 427-1 437.
[12] Gough C M, Seiler J R. The influence of environmental, soil carbon, root and stand characteristics on soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina Coastal Plain[J]. Forest Ecology and Management, 2004,191:353-363.
[13] Reichstein M, Rey A, Freibauer A, et al. Modeling temporal and largescale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices[J]. Global Biogeochemical Cycles, 2003,17(4):1 104-1 119.
[14] Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for Csaturation of soils[J]. Plant and Soil, 2002,241:155-176.
[15] 谢锦升,杨玉盛,解明曙,等.植被恢复对侵蚀退化红壤碳吸存的影响[J].水土保持学报,2006,20(6):95-98,123.
[16] 谢锦升,杨玉盛,解明曙,等.植被恢复对退化红壤轻组有机质的影响[J].土壤学报,2008,45(1):170-175.
[17] Pumpanen J, Ilvesniemi H, Kulmala L, et al. Respiration in boreal forest soil as determined from carbon dioxide concentration profile[J]. Soil Science Society of America Journal, 2008,72:1 187-1 196.
[18] Davidson E , Savage K E, Trumbore S E, et al. Vertical partitioning of CO2 production within a temperate forest soil[J]. Global Change Biology, 2006,12:944-956.
[19] Li Y, Xu M, Zou X. Heterotrophic soil respiration in relation to environmental factors and microbial biomass in two wet tropical forests[J]. Plant and Soil, 2006,281:193-201.
[20] Franklin O G, Hgberg P G, Ekblad A G, et al. Pine forest floor carbon accumulation in response to N and PK additions: Bomb 14C modeling and respiration studies[J]. Ecosystem, 2003,6:644-658.
[21] Keith H, Jacobsen K L, Raison R J. Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest[J]. Plant and Soil, 1997,190:127-141.
[22] Zhang L, Chen Y, Li W, et al. Abiotic regulators of soil respiration in desert ecosystems[J]. Environmental Geology, 2009,57:1 855-1 864.
[23] Smith V R. Moisture, carbon and inorganic nutrient controls of soil respiration at a subAntarctic island[J]. Soil Biology and Biochemistry, 2005,37:81-91.
[24] Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the harvard forest[J]. Forest Ecology and Management, 2004,196:43-56.
[25] 曹裕松,李志安,傅声雷,等.模拟氮沉降对鹤山3种人工林表土碳释放的影响[J].江西农业大学学报,2006,28(1):101-108.
[26] Rodeghiero M, Cescatti A. Indirect partitioning of soil respiration in a series of evergreen forest Ecosystems[J]. Plant and Soil, 2006,284:7-22.
[27] Yuko Y, Hideaki S, Yojiro M, et al. Effects of soil and vegetation types on soil respiration rate in larch plantations and a mature deciduous broadleaved forest in northern japan[J]. Eurasian Journal of Forest Research, 2006,9-2:79-95.
[28] Fissore C, Giardina C P, Kolka R K, et al. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America[J]. Global Change Biology, 2008,14:193-205.
[29] Giardina C P, Ryan M G, Hubbard R M, et al. Tree species and soil textural controls on carbon and nitrogen mineralization rates[J]. Soil Science Society of America Journal, 2001,65:1 272-1 279.
[30] Pieiro G, Oesterheld M, Batista W, et al. Opposite changes of wholesoil vs. pools C∶N ratios: a case of Simpson′s paradox with implications on nitrogen cycling[J]. Global Change Biology, 2006,12:804-809.
[31] Niklińska M, Maryański M, Laskowski R. Effect of temperature on humus respiration rate and nitrogen mineralization: Implications for global climate change[J]. Biogeochemistry, 1999,44:239-257.

备注/Memo

备注/Memo:
基金项目:高等学校博士学科点专项科研基金资助项目(20060394001);福建省科技厅重点项目(2007I0012)。
更新日期/Last Update: 2015-08-07