[1]朱祎珍,黄自安,魏茂胜,等.添加氮素化合物对天竺桂废弃枝叶分解的影响[J].森林与环境学报,2017,37(04):477-482.[doi:10.13324/j.cnki.jfcf.2017.04.017]
 ZHU Yizhen,HUANG Zian,WEI Maosheng,et al.Effects of adding nitrogen compound on waste branch leaves decomposition of Cinnamomum japonicum[J].,2017,37(04):477-482.[doi:10.13324/j.cnki.jfcf.2017.04.017]
点击复制

添加氮素化合物对天竺桂废弃枝叶分解的影响()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
37
期数:
2017年04期
页码:
477-482
栏目:
出版日期:
2017-10-15

文章信息/Info

Title:
Effects of adding nitrogen compound on waste branch leaves decomposition of Cinnamomum japonicum
作者:
朱祎珍1 黄自安1 魏茂胜1 黄清平2 王安娇3 宋漳3
1. 三明市园林管理局, 福建 三明 365000;
2. 三明学院建筑工程学院, 福建 三明 365004;
3. 福建农林大学林学院, 福建 福州 350002
Author(s):
ZHU Yizhen1 HUANG Zi’an1 WEI Maosheng1 HUANG Qingping2 WANG Anjiao3 SONG Zhang3
1. Garden Administration Bureau of Sanming City, Sanming, Fujian 365000, China;
2. College of Architectural and Civil Engineering, Sanming University, Sanming, Fujian 365004, China;
3. College of Forestry, Fujian Agriculture and Forestry University,
关键词:
天竺桂废弃枝叶氮素化合物分解
Keywords:
Cinnamomum japonicum Sieb.waste branch leavesnitrogen compounddecomposition
分类号:
X705
DOI:
10.13324/j.cnki.jfcf.2017.04.017
摘要:
采用添加氮素化合物的方法对天竺桂废弃枝叶进行促进分解试验。结果表明,废弃枝叶分解过程中的真菌个体数量随分解时间的不同而变化,不同处理间的真菌个体数量无显著差异,各处理不同分解时间真菌个体数量存在极显著差异。真菌类群数量随分解时间的不同而变化,总体上随废弃枝叶分解进程呈增加趋势。在废弃枝叶分解试验中共分离出16个真菌类群,其中黑灰球菌属(Bovista)、共头霉属(Syncephalastrum)、刺座霉属(Volutella)、小克银汉霉属(Cunninghamella)和锁霉属(Itersonilia)为优势真菌类群。在枝叶分解初期(0~30 d) pH值增高(pH值8.22~8.88),使得微生物在高温分解阶段拥有高的分解能力,随后总体上呈下降趋势。堆料含水量相较于初始含水量变化不大,堆料的含水量保持在56%~71%之间,使微生物能保持较大的分解能力。添加碳酸氢铵和尿素处理后7~14 d的堆体温度维持在50~56℃之间,高于水处理的堆体温度(46~51.5℃),表明堆体处在枝叶分解的高温快速发酵阶段,添加碳酸氢铵和尿素处理后堆料的微生物活性更强。综合试验结果表明,在天竺桂废弃枝叶分解过程中添加氮素化合物,可增强分解微生物的活性,对废弃枝叶的分解有一定的促进作用。
Abstract:
The treatments of adding nitrogen compound on the decomposition of waste branch and leave of Cinnamomum japonicum Sieb. were investigated. The results indicated that the number of fungi isolated from samples changed obviously with time. There was no significant difference in the fungal quantity between different treatments while existting significant difference in different decomposition stage. The quantity of fungal genera varied and generally showed increase trend with time. Sixteen fungal genera were isolated and identified from samples of waste branch and leave during decomposition, and Bovista, Syncephalastrum, Volutella, Cunninghamella and Itersonilia were the predominant fungal genera. The pH value increased to a high range from 8.22 to 8.88 during the early decomposition stage (0-30 d) which made microbes had a high decomposition ability to organic materials in high-temperature decomposing period, then decrease in the later stage. The moisture changed little compared with initial moisture contents ranged between 56% and 71% which made microbes had a high decomposition ability during decomposing. The temperature of piles treated by adding nitrogen compounds (ammonium bicarbonate and urea) ranged from 50 to 56 ℃ that were higher than that of water treatment in a value of 46 to 51.5 ℃ after 7-14 d which showed that the microbial activity of nitrogen compound treatment were higher than that of water treatment in high-temperature decomposing period. In conclusion, the microbial activity of groups treated by adding nitrogen compound showed a stronger vigor which had a promoting effect on the decomposition of waste branch and leave of C.japonicum.

参考文献/References:

[1] 韩怀芬,金漫彤,迟春娟,等.适合我国国情的城市生活垃圾处理方法[J].环境污染与防治,2000,22(6):40-41.
[2] 张继南,贾翠娟.城市垃圾处理技术应用与发展[J].广西轻工业,2007,23(6):73-75.
[3] WESTERMAN P W,BICUDO J R.Management considerations for organic waste use in agriculture[J].Bioresource Technology,2005,96(2):215-221.
[4] 顾希贤,许月蓉.垃圾堆肥微生物接种实验[J].应用与环境生物学报,1995,1(3):274-278.
[5] 席北斗,刘鸿亮,黄国和,等.复合微生物菌剂强化堆肥技术研究[J].环境污染与防治,2003,25(5):262-264.
[6] 耿冬梅,宣世伟,王鹏.高温好氧菌群用于接种垃圾堆肥的实验研究[J].上海环境科学,2003,22(10):699-701.
[7] 席北斗,刘鸿亮,孟伟,等.高效复合微生物菌群在垃圾堆肥中的应用[J].环境科学,2001,22(5):122-125.
[8] 周少奇.有机垃圾好氧堆肥法的生化反应机理[J].环境保护,1999(3):30-32.
[9] JAKOBSEN S T.Aerobic decomposition of organic wastes 2.Value of compost as a fertilizer[J].Resources,Conservation and Recycling,1995,13(1):57-71.
[10] BRABER K,NOVEM B V.Anaerobic digestion of municipal solid waste:A modern waste disposal option on the verge of breakthrough[J].Biomass and Bioenergy,1995,9(1/2/3/4/5):365-376.
[11] MATA-ALVAREZ J.Biological household waste treatment in Europe:Second Aalborg international conference[J].Resources Conservation and Recycling,1996,17(1):67-73.
[12] GARCÍA C,HERNANDEZ T,COSTA F.The influence of composting on the fertilizing value of an aerobic sewage sludge[J].Plant and Soil,1991,136(2):269-272.
[13] MACGREGOR S T, MILLER F C,PSARIANOS K M,et al. Composting process control based on interaction between microbial heat output and temperature[J]. Applied and Environmental Microbiology,1981,41(6):1321-1330.
[14] SLATER R A,FREDERICKSON J. Composting municipal waste in the UK:some lessons from Europe[J]. Resources Conservation and Recycling,2001,32(3/4):359-374.
[15] TOSUN I,GÖNÜLLÜ M T,ARSLANKAYA E,et al. Co-composting kinetics of rose processing waste with OFMSW[J]. Bioresource Technology,2008,99(14):6143-6149.
[16] 徐曾符.沼气工艺学[M].北京:农业出版社,1981:28-33.
[17] 黄得扬,陆文静,王洪涛.有机固体废物堆肥化处理的微生物学机理研究[J].环境污染治理技术与备,2004,5(1):12-18,71.
[18] 许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986:91-133.
[19] ZUCCONI F,FORTE M,MONACO A,et al.Biological evaluation of compost maturity[J].Biocycle,1981,22(4):27-29.
[20] MOUCHACCA J. Thermophilic fungi:Biodiversity and taxonomic status[J]. Cryptogamie Mycologie,1997,18(1):19-69.
[21] STENTIFORD E I. Composting control:Principles and practice[C]//DE BERTOLDI M, SEQUIP, LEMMES B,et al. The Science of Composting. Glassgow, United Kingdom:Blackie Academic and Professional, 1996:49-59.
[22] SHARMA V K,CANDITELLI M,FORTUNA F,et al. Processing of urban and agro-industrial residues by arerobic composting:review[J]. Energy Conversion and Management,1997,38(5):453-478.
[23] WALKER L P,NOCK T D,GOSSETT J M,et al. The role of periodic agitation and water addition in managing moisture limitations during high-solids aerobic decomposition[J]. Process Biochemistry,1999,34(6/7):601-612.
[24] 罗维,陈同斌,高定,等.城市污泥与猪粪混合堆肥过程中湿度空间变异[J].环境科学学报,2004,24(1):126-133.
[25] NOGUEIRA W A,NOGUEIRA F N,DEVENS D C. Temperature and pH control in composting of coffee and agricultural wastes[J]. Water Science and Technology,1999,40(1):113-119.
[26] BISHOP P L,GODFREY C. Nitrogen transformations during sludge composting[J]. Biocycle,1983,24(4):34-39.
[27] EKLIND Y,KIRCHMANN H. Composting and storage of organic household waste with different litter amendments Ⅱ:nitrogen turnover and losses[J]. Bioresource Technology,2000,74(2):125-133.
[28] JERIS J S,REGAN R W. Controlling environmental parameters for optimum composting,Part Ⅲ[J]. Compost Science,1973,14(3):16-22.
[29] MADEJÓN E,DÍAZ M J,LÓPEZ R,et al. Co-composting of sugarbeet vinasse:influence of the organic matter nature of the bulking agents used[J]. Bioresource Technology, 2001, 76(3):275-278.

备注/Memo

备注/Memo:
收稿日期:2017-03-20;改回日期:2017-05-10。
基金项目:福建省自然科学基金项目(2014J01076)。
作者简介:朱祎珍(1974-),女,高级工程师,从事城市园林绿化研究。E-mail:754693378@qq.com。
通讯作者:宋漳(1963-),男,教授,博士,从事森林病理学及有害生物防控研究。E-mail:fjszsz@126.com。
更新日期/Last Update: 2017-10-17