[1]赵斌,徐张俊,吴向崇,等.3种热带植物幼苗的耐盐性[J].森林与环境学报,2020,40(05):519-525.[doi:10.13324/j.cnki.jfcf.2020.05.009]
 ZHAO Bin,XU Zhangjun,WU Xiangchong,et al.Salt tolerance of three tropical plant seedlings[J].,2020,40(05):519-525.[doi:10.13324/j.cnki.jfcf.2020.05.009]
点击复制

3种热带植物幼苗的耐盐性()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
40
期数:
2020年05期
页码:
519-525
栏目:
出版日期:
2020-09-15

文章信息/Info

Title:
Salt tolerance of three tropical plant seedlings
作者:
赵斌12 徐张俊12 吴向崇3 郭昊12 崔正坤12 陈颖12
1. 南京林业大学南方现代林业协同创新中心, 江苏 南京 210037;
2. 南京林业大学生物与环境学院, 江苏 南京 210037;
3. 三亚新大兴园林生态有限公司, 海南 三亚 572000
Author(s):
ZHAO Bin12 XU Zhangjun12 WU Xiangchong3 GUO Hao12 CUI Zhengkun12 CHEN Ying12
1. Collaborative Innovation Center of the Southern Modern Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China;
2. College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China;
3. Sanya New Daxing Garden Ecology Co., Ltd, Sanya, Hainan 572000, China
关键词:
热带植物凤凰木洋金凤雨树酶活性抗氧化耐盐性评价隶属函数法
Keywords:
tropical plantsDelonix regiaCaesalpinia pulcherrimaSamanea samanenzymatic activityoxidation resistancesalt tolerance evaluationmembership function method
分类号:
S728.6
DOI:
10.13324/j.cnki.jfcf.2020.05.009
摘要:
为探明南方沿海3种常见绿化植物的耐盐性,筛选出其中耐盐性最强的植物,以凤凰木、洋金凤和雨树幼苗为试验材料,对其进行对照(0 mmol·L-1,CK)、低盐(100 mmol·L-1,N1)、高盐(200 mmol·L-1,N2)的NaCl处理15 d,测定植物的生长和生理指标,并用隶属函数法分析比较3种植物幼苗的耐盐性。结果表明:N1处理下,凤凰木根系和地上部分的生长就开始受到抑制,在N2处理下影响更严重;洋金凤和雨树的根系和地上部分生长在N1处理下被促进,但在N2处理下与对照没有显著差异。3种植物幼苗的相对电导率随着盐浓度的增加而增加,其中洋金凤的增幅最显著。随着盐浓度的增加,丙二醛(MDA)含量的变化除了凤凰木呈现先降后增的趋势,其余树种均表现出逐渐增加的趋势。在不同浓度盐胁迫下,凤凰木的超氧歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性和抗坏血酸(AsA)含量表现降低的趋势。在N1处理下,洋金凤的SOD活性和AsA含量显著增加;在N2处理下,其SOD活性显著降低,CAT活性、AsA含量显著增加。在不同浓度盐胁迫下,雨树的POD、CAT、抗坏血酸过氧化物酶(APX)活性和AsA含量都显著高于对照。隶属函数法分析表明,3种植物幼苗的耐盐性强弱顺序为:雨树 > 洋金凤 > 凤凰木。
Abstract:
Three common green plants from the southern coastal areas of China were screened to determine their salt tolerance. Seedlings from Delonix regia, Caesalpinia pulcherrima, and Samanea saman were salt-treated at three concentrations for 15 days[0 mmol·L-1(CK), 100 mmol·L-1(N1), and 200 mmol·L-1 sodium chloride(N2)]. The growth and physiological indexes were measured, and the salt tolerances were compared via the membership function method. The results showed that the growth of the D. regia roots and aboveground parts were inhibited in low salt concentrations and were further restricted in high salt concentrations. The growth of C. pulcherrima and S. saman roots and aboveground parts increased in low salt concentrations, but there were no differences in high salt concentrations. The relative conductivities of the seedlings increased with increasing salt concentrations; the highest increase was in C. pulcherrima. As the salt concentration increased, malondialdehyde(MDA) content in D. regia decreased and then increased, but MDA content gradually increased in the other species. The activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) and the ascorbic acid(AsA) content trended downwards in D. regia as the salt concentration(i.e., stress) decreased. C. pulcherrima SOD activity and the AsA content significantly increased when treated with low and high salt concentrations, but the CAT activity increased only under the high salt concentration treatment. The activities of POD, CAT, and ascorbate peroxidase and the AsA content in S. saman were significantly higher than those in the control in both salt treatments. The analyses showed that S. saman was the most salt-tolerant, and D. regia was the least salt-tolerant plant species.

参考文献/References:

[1] FAN C X. Genetic mechanisms of salt stress responses in halophytes[J/OL]. Plant Signaling & Behavior, 2020, 15(1):1704528[2020-03-27]. https://www.tandfonline.com/doi/abs/10.1080/15592324.2019.1704528.
[2] FU J M, LIU B. Enhanced yield performance of transgenic cry1C* rice in saline-alkaline soil[J]. GM Crops & Food, 2020, 11(2):97-112.
[3] 陈永快,王涛,廖水兰,等. 逆境及生长调节剂对作物抗逆性的影响综述[J]. 江苏农业科学,2019,47(23):68-72.
[4] SOLIMAN W S, SUGIYAMA S I, ABBAS A M, et al. Contribution of avoidance and tolerance strategies towards salinity stress resistance in eight C3 turfgrass species[J]. Horticulture, Environment, and Biotechnology, 2018, 59(1):29-36.
[5] 王康君,樊继伟,陈凤,等. 植物对盐胁迫的响应及耐盐调控的研究进展[J]. 江西农业学报,2018,30(12):31-40.
[6] 中国科学院中国植物志编辑委员会. 中国植物志:第四十二卷第一分册[M]. 北京:科学出版社,1993.
[7] 梁永婵,陈志云,孔德龙,等. 凤凰木病虫害发生现状及防治技术[J]. 河北林业科技,2019(2):57-61.
[8] 丘佐旺,何波祥,周保彪,等. 5个雨树种源在湛江遂溪的早期生长[J]. 林业与环境科学,2017,33(3):29-32.
[9] 郄光发,曹丽雯,刘宏明,等. 我国城市市树选择应用现状及区域分布特征[J]. 林业科学,2019,55(10):76-87.
[10] 贺磊,游凯,李远芳,等. 5种典型热带引种园林植物幼苗抗寒性研究[J]. 中南林业科技大学学报,2011,31(2):65-71.
[11] NEETU S, PHOOL C, DILIPKUMAR P, et al. Effect of Delonix regia(Boj. Ex Hook.) Raf. stem bark extract against experimentally induced ulcers in rats[J]. Indian Journal of Experimental Biology, 2017, 55(1):49-54.
[12] ALVES M M, ALVES E U, DE ARAùJO L R, et al. Germination and vigor of Caesalpinia pulcherrima(L.) Sw. seeds under different light and temperature conditions[J]. Ciência Rural, 2018, 48(8):e20170741.
[13] OW L F, GHOSH S, YUSOF M L M, et al. Growth of Samanea saman:estimated cooling potential of this tree in an urban environment[J]. Urban Forestry & Urban Greening, 2019, 41:264-271.
[14] CHEN Y, LUO Y Y, QIU N F, et al. Ce3+ induces flavonoids accumulation by regulation of pigments, ions, chlorophyll fluorescence and antioxidant enzymes in suspension cells of Ginkgo biloba L.[J]. Plant Cell, Tissue and Organ Culture, 2015, 123(2):283-296.
[15] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981, 22(5):867-880.
[16] UEDA Y, WU L B, FREI M, et al. A critical comparison of two high-throughput ascorbate analyses methods for plant samples[J]. Plant Physiology and Biochemistry, 2013, 70:418-423.
[17] 王因花,燕丽萍,吴德军,等. 绒毛白蜡’青碧’不同半同胞家系的耐盐性评价[J]. 中南林业科技大学学报,2020,40(3):30-38.
[18] 何凌仙子,贾志清,刘涛,等. 植物适应逆境胁迫研究进展[J]. 世界林业研究,2018,31(2):13-18.
[19] 张相锋,杨晓绒,焦子伟,等. 植物耐盐性评价研究进展及评价策略[J]. 生物学杂志,2018,35(6):91-94.
[20] 孙晶,王庆成,刘强,等. NaHCO3胁迫下朝鲜接骨木和茶条槭苗木的生长及生理响应[J]. 林业科学,2010,46(8):71-77.
[21] 列志旸,薛立. 盐胁迫对树木生长影响研究综述[J]. 世界林业研究,2017,30(3):30-34.
[22] 乌凤章. 三个越橘品种对盐胁迫的生长和生理响应及耐盐性差异[J]. 植物生理学报,2019,55(11):1638-1646.
[23] 贾新平,邓衍明,孙晓波,等. 盐胁迫对海滨雀稗生长和生理特性的影响[J]. 草业学报,2015,24(12):204-212.
[24] 杨升,刘涛,张华新,等. 盐胁迫下沙枣幼苗的生长表现和生理特性[J]. 福建林学院学报,2014,34(1):64-70.
[25] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930.
[26] 林雪锋,颉洪涛,虞木奎,等. 盐胁迫下3种海滨植物形态和生理响应特征及耐盐性差异[J]. 林业科学研究,2018,31(3):95-103.
[27] 沈金玲,钟镇芬,黄永健,等. 盐胁迫对桉树(Eucalyptus)活性氧代谢和CAT基因表达的影响[J]. 分子植物育种,2020,18(5):1661-1665.
[28] 柳冬香. 盐胁迫对美蕊花幼苗叶片活性氧代谢及清除系统的影响[J]. 福建林学院学报,2014,34(2):171-175.

备注/Memo

备注/Memo:
收稿日期:2020-07-01;改回日期:2020-07-29。
基金项目:海南省院士工作站创新平台合作项目(DXYF2017001);江苏省高校优势学科建设工程项目(PAPD);南京林业大学大学生创新训练计划项目(2018NFUSPITP015)。
作者简介:赵斌(1993-),男,硕士研究生,从事植物逆境生理与生物技术研究。Email:375798241@qq.com。
通讯作者:陈颖(1965-),女,教授,从事植物生理与森林培育研究。Email:chynjfu@163.com。
更新日期/Last Update: 1900-01-01