[1]李想,史世京,曹颖,等.冷冻胁迫下毛竹叶绿素荧光参数变化及抗寒相关转录因子表达[J].森林与环境学报,2014,34(01):57-63.
点击复制

冷冻胁迫下毛竹叶绿素荧光参数变化及抗寒相关转录因子表达()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
34
期数:
2014年01期
页码:
57-63
栏目:
出版日期:
2014-01-15

文章信息/Info

文章编号:
1001-389X(2014)01-0057-07
作者:
李想 史世京 曹颖 卢学琴 胡尚连
(西南科技大学生命科学与工程学院,四川 绵阳 621010)
关键词:
毛竹 冷冻胁迫 叶绿素荧光参数 转录因子
分类号:
S718.46
文献标志码:
A
摘要:
    研究短时冷冻胁迫条件下叶绿素荧光参数和抗寒相关转录因子的表达水平变化,探讨毛竹抵抗冷冻胁迫的机制。以生长90 d的毛竹实生苗为材料,人工模拟短时间(15,30,60,90 min)冷害(4 ℃)、冻害(-5、-10 ℃)胁迫,测定叶片的叶绿素荧光参数和抗寒相关转录因子(PeMYBPeWRKY10、PeCBF1、PeDREB1)的表达水平。结果表明,冷害和冻害均能对毛竹叶片光系统Ⅱ(PSⅡ)活性中心造成损伤,4与-5 ℃短时间胁迫,对PSⅡ的损伤是可逆的,而-10 ℃造成的损伤是不可逆的。相关性分析结果表明,冷冻胁迫条件下,转录因子PeMYBPeWRKY10与各叶绿素荧光参数呈负相关关系,PeCBF1和PeDREB1与各叶绿素荧光参数呈正相关关系。

参考文献/References:

[1] 胡文海,闫小红,袁丽芳,等.光强在低温弱光胁迫后番茄叶片光合作用恢复中的作用[J].植物研究,2011,31(2):164-168.

[2] 胡春梅,侯喜林,王旻.低温胁迫对不结球白菜光合及叶绿素荧光特性的影响[J].西北植物学报,2008,28(12):2 478-2 484.

[3] Liao Y, Zou H F, Wang H W, et al. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants[J]. Cell Research, 2008,18:1 047-1 060.

[4] Zou X L, Seemann J R, Neuman D, et al. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway[J]. Journal of Biological Chemistry, 2004,279(53):55 770-55 779

[5] Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in coldresponsive gene expression in transgenic rice[J]. Plant and Cell Physiology, 2006,47(1):141-153.

[6] 靖长柏,张利阳,童再康,等.自然低温胁迫下3种桉树的叶绿素荧光特性研究[J].浙江林业科技,2011,31(1):7-10.

[7] Bilska A, Sowinski P. Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis[J]. Annals of Botany, 2010,106(5):675-686.

[8] Fu W G, Li P P, Wu Y Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce[J]. Scientia Horticulturae, 2012,135:45-51.

[9] 武辉,周艳飞,侯丽丽,等.低温弱光胁迫对棉花幼苗叶绿素荧光特性及能量分配的影响[J].新疆农业科学,2012,49(3):393-399.

[10] 蒋俊明,李本祥,蒋南春,等.2008年南方雪灾对川南丛生竹的影响[J].林业科学,2008,44(11):141-144.

[11] Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool (REST ?) for group-wise comparison and statistical analysis of relative expression results in real-time PCR[J]. Nucleic Acids Research, 2002,30(9):e36.

[12] 史世京,胡尚连,曹颖,等.冷冻胁迫下方竹抗氧化酶活性和叶绿素荧光特性[J].福建林学院学报,2013,33(1):38-42.

[13] 陶宏征,赵昶灵,李唯奇.植物对低温的光合响应[J].中国生物化学与分子生物学报,2012,28(6):501-508.

[14] Greer D H, Berry J A, Bjorkman O. Photoinhibition of photosynthesis in intact bean leaves: role of light and temperature and requirement for chloroplastprotein synthesis during recovery[J]. Planta, 1986,168(2):253-260.

[15] Aro E-M, Tyystjarvi E, Nurmi A. Temperature-dependent changes in photosystemⅡ heterogeneity of attached leaves under high light[J]. Physiologia Plantarum, 1990,79(4):585-592.

[16] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics[J]. Annual Review of Physiology and Plant Molecular Biology, 1991,42(1):313-349.

[17] DemmigAdams B, Adams W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis[J]. Trends in Plant Science, 1996,1(1):21-26.

[18] Kocsy G, Galiba G, Brunold C. Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants[J]. Physiologia Plantarum, 2001,113(2):158-164.

[19] Zhang L C, Zhao G Y, Xia C, et al. Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis[J]. Gene, 2012,505(1):100-107.

[20] 付乾堂,余迪求.拟南芥AtWRKY25、AtWRKY26和AtWRKY33在非生物胁迫条件下的表达分析[J].遗传,2010,32(8):848-856.

[21] Jaglo K R, Kleff S, Amundsen K L, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiology, 2001,127(3):910-917.

[22] Agarwal M, Hao Y J, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. The Journal of Biological Chemistry, 2006,281(49):37 636-37 645.

相似文献/References:

[1]张巧玲,曾钦志,李清芸,等.H2O2溶液处理对毛竹材润湿与胶合性能的影响[J].森林与环境学报,2014,34(02):184.
[2]陈嘉琦,温国胜,王艳红,等.春季毛竹光化学效率空间异质性比较[J].森林与环境学报,2014,34(01):52.
[3]史世京,胡尚连,曹颖,等.冷冻胁迫下方竹抗氧化酶活性和叶绿素荧光特性[J].森林与环境学报,2013,33(01):38.
 SHI Shi-jing,HU Shang-lian,CAO Ying,et al.Preliminary studies on antioxidant enzyme activity and chlorophyll fluorescence parameters in Chimonobambusa quadrangularis under the condition of chilling and freezing stress[J].,2013,33(01):38.
[4]林明珠,陈瑞英.毛竹材对酚醛树脂渗透性能的研究[J].森林与环境学报,2012,32(03):280.
 [J].,2012,32(01):280.
[5]高培军,桂仁意,黄坚钦,等.毛竹雨雪冰冻灾害主要影响因子的回归分析[J].森林与环境学报,2010,30(02):165.
 [J].,2010,30(01):165.
[6]崔敏,殷亚方,姜笑梅,等.不同竹龄毛竹材物理性质的差异分析[J].森林与环境学报,2010,30(04):338.
 [J].,2010,30(01):338.
[7]张庆波,胡尚连,徐刚,等.毛竹bZIP转录因子的基因结构与进化分析[J].森林与环境学报,2016,36(01):54.[doi:10.13324/j.cnki.jfcf.2016.01.009]
 ZHANG Qingbo,HU Shanglian,XU Gang,et al.Analysis on gene structure and evolution of bZIP transcription factor of Phyllostachys edulis[J].,2016,36(01):54.[doi:10.13324/j.cnki.jfcf.2016.01.009]
[8]刘顺,吴珍花,盛可银,等.江西毛竹林土壤理化性质与养分吸附特性[J].森林与环境学报,2016,36(02):195.[doi:10.13324/j.cnki.jfcf.2016.02.011]
 LIU Shun,WU Zhenhua,SHENG Keyin,et al.Soil physico-chemical properties and nutrient absorption in Phyllostachys edulis forests in different areas of Jiangxi[J].,2016,36(01):195.[doi:10.13324/j.cnki.jfcf.2016.02.011]
[9]桂许维,张扬,宋庆妮,等.毛竹林钾矿物分解细菌的分离与鉴定[J].森林与环境学报,2018,38(04):499.[doi:10.13324/j.cnki.jfcf.2018.04.018]
 GUI Xuwei,ZHANG Yang,SONG Qingni,et al.Isolation and identification of the mineral potassium-solubilizing bacteria in Phyllostachys edulis forest[J].,2018,38(01):499.[doi:10.13324/j.cnki.jfcf.2018.04.018]
[10]徐道炜,刘金福,何中声,等.毛竹向杉木林扩张后的群落物种多样性特征[J].森林与环境学报,2019,39(01):37.[doi:10.13324/j.cnki.jfcf.2019.01.007]
 XU Daowei,LIU Jinfu,HE Zhongsheng,et al.Community species diversity after Phyllostachys edulis expansion to Cunninghamia lanceolata forest[J].,2019,39(01):37.[doi:10.13324/j.cnki.jfcf.2019.01.007]

备注/Memo

备注/Memo:
四川省应用基础研究基金资助项目(2013JY01821);国家科技支撑计划资助项目(2008BADC2B02);西南科技大学实验技术研究基金资助项目(13syjs-36)。
更新日期/Last Update: 2015-01-06