ZHANG Qingbo,HU Shanglian,XU Gang,et al.Analysis on gene structure and evolution of bZIP transcription factor of Phyllostachys edulis[J].,2016,36(01):54-61.[doi:10.13324/j.cnki.jfcf.2016.01.009]





Analysis on gene structure and evolution of bZIP transcription factor of Phyllostachys edulis
张庆波12 胡尚连12 徐刚12 曹颖12 卢学琴12 龙治坚12
1. 西南科技大学植物细胞工程实验室, 四川 绵阳 621010;
2. 四川省生物质资源利用与改性工程技术研究中心, 四川 绵阳 621010
ZHANG Qingbo12 HU Shanglian12 XU Gang12 CAO Ying12 LU Xueqin12 LONG Zhijian12
1. Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China;
2. Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, Sichuan 621010, China
Phyllostachys edulisbZIP transcription factorbioinformatics analysis
以毛竹基因组数据库中的107个编码bZIP转录因子的基因为材料,对其进行系统发育分析,筛选得到了A、D和S亚族的bZIP家族成员,并对其基因结构、适应性进化、与水稻基因对之间的进化分歧时间及蛋白质同源建模等进行生物信息学分析。结果表明,毛竹A、D和S亚族共有47个bZIP家族成员,其中A亚族18个,D亚族16个,S亚族13个。基因结构分析表明,3个亚族中内含子数量为0-16个,而且D亚族基因的内含子—外显子组成比A亚族和S亚族更为复杂。适应性进化分析表明,3个亚族总体上处于净化选择压力之下;A、D和S亚族的平均进化分歧时间分别为279.0,265.6和202.9 Mya;47个毛竹bZIP蛋白质主要以α-螺旋为主,且D亚族的三级结构比A和S亚族复杂。
Genes of 107 Phyllostachys edulis bZIP transcription factors were collected as materials from available public databases. Subsequently, the A, D and S subgroup members were screened through the phylogenetic analysis, and their physico-chemical property, gene structure, adaptive evolution, and the evolutionary divergence time were further analyzed by the bioinformatics method. The results showed that the A, D and S subgroups of P. edulis bZIP transcription factors contained 47 members of them, 18 bZIPs belonged to the A subgroup, 16 and 13 belonging to D and S subgroup, respectively. Gene structure analysis showed that, among these bZIP genes, the number of introns ranged from 0 to 16, and the composition of intron-exon in D subgroup genes was more complex than that of A and S subgroups. Meanwhile, according to adaptive evolution analysis, it was discovered that these three P. edulis bZIP subgroups undergone purifying selection pressure, and the mean evolutionary divergence time in the A, D and S subgroup was 279.0, 265.6 and 202.9 Mya, respectively. Finally, via protein tertiary structure analysis it was discovered that, 47 bZIP proteins were mainly made up of α-helix and the members of D group were more complex than that of S and A group.


[1] JAKOBY M, WEISSHAAR B, DROGE-LASER W, et al. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3):106-111.
[2] 王玉成,李红艳,杨传平,等.cDNA微阵列技术研究干旱胁迫下柽柳基因的表达[J].植物研究,2007,27(2):186-194.
[3] 沈元月,黄丛林,张绣海,等.植物抗旱分子机制[J].中国生态农业学报,2002,10(1):30-34.
[4] 杨传凤,曹颖,胡尚连,等.基于慈竹转录组MYB基因的克隆及胁迫诱导表达[J].森林与环境学报,2015,35(1):60-66.
[5] UNO Y, FURIHATA T, ABE H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21):11 632-11 637.
[6] HOSSAIN M A, CHO J I, HAN M, et al. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice[J]. Journal of Plant Physiology, 2010, 167(17):1 512-1 520.
[7] HOSSAIN M A, LEE Y, CHO J I, et al. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice[J]. Plant Molecular Biology, 2010, 72(4/5):557-566.
[8] KATAGIRI F, LAM E, CHUA N H. Two tobacco DNA binding proteins with homology to the nuclear factor CREB[J]. Nature, 1989, 340(6 236):727-730.
[9] SINGH K B, FOLEY R C, OÁATE-SÁNCHEZ L. Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology, 2002, 5(5):430-436.
[10] DESPRÉS C, DELONG C, GLAZE S, et al. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a group of the TGA family of bZIP transcription factors[J]. The Plant Cell Online, 2000, 12(2):279-290.
[11] ZHOU J M, TRIFA Y, SILVA H, et al. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid[J]. Molecular Plant-Microbe Interactions, 2000, 13(2):191-202.
[12] ZHANG Y, CHENG Y T, QU N, et al. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs[J]. Plant Journal, 2006, 48(5):647-656.
[13] BLANCO F, SALINAS P. Early genomic responses to salicylic acid in Arabidopsis[J]. Plant Molecular Biology, 2009, 70(1):79-102.
[14] PENG Z, LU Y, LI L, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetics, 2013, 45(4):456-461.
[15] STERN A, DORON-FAIGENBOIM A, EREZ E, et al. Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach[J]. Nucleic Acids Research, 2007, 35(Web Server Issue): W506-W511.
[16] WANG D, ZHANG Y, ZHANG Z, et al. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies[J]. Genomics Proteomics Bioinformatics, 2010, 8(1):77-80.
[17] BALOGLU M C, ELDEM V, HAJYZADEH M, et al. Genome-wide analysis of the bZIP transcription factors in cucumber[J]. Public Library of Science One, 2014, 9(4):e96 014.
[18] BETTS M J, GUIG R, AGARWAL P, et al. Exon structure conservation despite low sequence similarity: a relic of dramatic events in evolution[J]. The European Molecular Biology Organization Journal, 2001, 20(19):5 354-5 360.
[19] NEI M. Selectionism and neutralism in molecular evolution[J]. Molecular Biology and Evolution, 2005, 22(10):2 318-2 342.
[20] KIMURA M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution[J]. Nature, 1977, 267(5 608):275-276.
[21] CORREA L G, RIANO-PACHON D M, SCHRAGO C G, et al. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes[J]. Public Library of Science One, 2008, 3(8):e2 944.
[22] WEI K, CHEN J, WANG Y, et al. Genome-wide analysis of bZIP-encoding genes in maize[J]. DNA Research, 2012, 19(6):463-476.
[23] WANG J, ZHOU J, ZHANG B, et al. Genome wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum[J]. Journal of Integrative Plant Biology, 2011, 53(3):212-231.
[24] CHAW S M, CHANG C C, CHEN H L, et al. Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genome[J]. Journal of Molecular Evolution, 2004, 58(4):424-441.


 LIU Shun,WU Zhenhua,SHENG Keyin,et al.Soil physico-chemical properties and nutrient absorption in Phyllostachys edulis forests in different areas of Jiangxi[J].,2016,36(01):195.[doi:10.13324/j.cnki.jfcf.2016.02.011]
 GUI Xuwei,ZHANG Yang,SONG Qingni,et al.Isolation and identification of the mineral potassium-solubilizing bacteria in Phyllostachys edulis forest[J].,2018,38(01):499.[doi:10.13324/j.cnki.jfcf.2018.04.018]
 XU Daowei,LIU Jinfu,HE Zhongsheng,et al.Community species diversity after Phyllostachys edulis expansion to Cunninghamia lanceolata forest[J].,2019,39(01):37.[doi:10.13324/j.cnki.jfcf.2019.01.007]
 WEI Qihua,WEI Wei,XIE Yongqun.Effect of heat treatment with silica-alumina sol on surface color of bamboo timber[J].,2019,39(01):344.[doi:10.13324/j.cnki.jfcf.2019.04.002]


更新日期/Last Update: 1900-01-01