[1]吴旺旺,张丽丽,林达,等.氮沉降对凋落叶分解前期土壤酶活性的影响[J].森林与环境学报,2017,37(02):174-180.[doi:10.13324/j.cnki.jfcf.2017.02.008]
 WU Wangwang,ZHANG Lili,LIN Da,et al.Effects of simulated nitrogen deposition on soil enzyme activity during early stage of leaf litter decomposition[J].,2017,37(02):174-180.[doi:10.13324/j.cnki.jfcf.2017.02.008]
点击复制

氮沉降对凋落叶分解前期土壤酶活性的影响()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
37
期数:
2017年02期
页码:
174-180
栏目:
出版日期:
2017-04-15

文章信息/Info

Title:
Effects of simulated nitrogen deposition on soil enzyme activity during early stage of leaf litter decomposition
作者:
吴旺旺12 张丽丽13 林达4 黄幸然13 胡宝叶13 易志刚13
1. 福建农林大学资源与环境学院, 福建 福州 350002;
2. 平潭综合实验区市政园林有限公司, 福建 平潭 350400;
3. 福建省土壤环境健康与调控重点实验室, 福建 福州 350002;
4. 福建省环境监测中心站, 福建 福州 350001
Author(s):
WU Wangwang12 ZHANG Lili13 LIN Da4 HUANG Xingran13 HU Baoye13 YI Zhigang13
1. College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;
2. Pingtan Municipal Landscape Limited Company, Pingtan, Fujian 350400, China;
3. Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fuzhou, Fujian 350002, China;
4. Fujian environmental moniroring center station, Fuzhou, Fujian 350001, China
关键词:
氮沉降凋落物分解纤维素酶天冬酰胺酶土壤
Keywords:
nitrogen depositionlitter decompositioncelluloseasparaginasesoil
分类号:
S714
DOI:
10.13324/j.cnki.jfcf.2017.02.008
摘要:
为了解凋落叶分解前期土壤酶活性对氮沉降的响应,通过室内模拟自然氮沉降(30 kg N·hm-2·a-1),设置无凋落叶(bare soil,BS)、马尾松凋落叶(Pinus massoniana litter,PL)、杉木凋落叶(Cunninghamia lanceolata litter,CL)及木荷凋落叶(Schima superba litter,SL)4种处理,恒温恒湿的条件下研究不同树种(马尾松、木荷、杉木)凋落叶分解率、土壤理化性质和土壤天冬酰胺酶及纤维素酶活性动态。结果表明:模拟氮沉降232 d后,杉木凋落叶分解最快,其次是木荷凋落叶,马尾松凋落叶分解最慢。随着外源氮的累积与凋落叶分解,凋落叶全氮含量增加,C∶N减小,土壤pH值下降显著。添加硝酸铵明显提高土壤氮素有效性。外源氮的持续输入能促进土壤纤维素酶活性增加,抑制土壤天冬酰胺酶的活性。凋落叶在分解前期抑制了土壤纤维素酶活性而后期起促进作用,但凋落叶分解对土壤天冬酰胺酶活性的影响无显著规律性。因此,氮循环将改变森林土壤C∶N比,从而影响森林生态系统的物质循环和能量流动。
Abstract:
In order to understand the response of soil enzyme to nitrogen deposition, four treatments, namely bare soil (BS), Pinus massoniana litter (PL), Cunninghamia lanceolata litter (CL) and Schima superba litter (SL) were set in simulated natural nitrogen deposition (30 kg N·hm-2·a-1), respectively in this study. The dynamic changes of litter decomposition of different plant (P. massoniana, C. lanceolata and S. superba) and activities of asparaginase and cellulase were analyzed during early stage of leaf litter decomposition with the constant temperature and soil water content. The results showed that the decomposition rate of C. lanceolata leaf litter was the highest, with the S. superba leaf litter in the medium and the lowest for P. massoniana leaf litter at the end of experiment. With the exogenous nitrogen accumulation and the leaf litter decomposition, total nitrogen content of leaf litter increased while C:N ratio of leaf litter decreased. The value of soil pH decreased significantly. And The nitrogen availability increased distinctly by adding ammonium nitrate. The activity of cellulase was promoted by exogenous nitrogen input, but soil asparaginase activity was inhibited, inversely. Cellulase activity in soil was inhibited by the leaf litter decomposition at the early stage, but promoted at the medium and last of litter decomposition process. However, the effect of leaf litter decomposition on asparaginase activity have no significant regularity. Therefore, nitrogen cycle will change the soil C:N ratio in forest, thus affect material circulation and energy flow of the forest ecosystem.

参考文献/References:

[1] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226.
[2] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
[3] GAO W L, YANG H, KOU L, et al. Effects of nitrogen deposition and fertilization on n transformations in forest soils: a review[J]. Journal of Soils and Sediments, 2015, 15(4): 863-879.
[4] GE X G, ZENG L X, XIAO W F, et al.Effect of litter substrate quality and soil nutrients on forest litter decomposition: a review[J]. Acta Ecologica Sinica, 2013, 33(2): 102-108.
[5] LORANGER G, PONGE J F, IMBERT D, et al. Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality[J]. Biology and Fertility of Soils, 2002, 35(4): 247-252.
[6] BRADFORD M A, BERG B, MAYNARD D S, et al. Understanding the dominant controls on litter decomposition[J]. Journal of Ecology, 2016, 104(1): 229-238.
[7] ZHANG D Q, HUI D F, LUO Y Q, et al. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors[J]. Journal of Plant Ecology, 2008, 1(2): 85-93.
[8] 葛晓敏, 吴麟, 唐罗忠. 森林凋落物分解与酶的相互关系研究进展[J]. 世界林业研究, 2013, 26 (1): 43-47.
[9] 关松荫. 土壤酶及其研究法[M]. 北京:农业出版社, 1986.
[10] FREY S D, KNORR M, PARRENT J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1): 159-171.
[11] HU Y L, JUNG K, ZENG D H, et al. Nitrogen-and sulfur-deposition-altered soil microbial community functions and enzyme activities in a boreal mixedwood forest in western Canada[J]. Canadian Journal of Forest Research, 2013, 43(9): 777-784.
[12] 王晶苑, 张心昱, 温学发, 等. 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制[J]. 生态学报, 2013, 33(5): 1 337-1 346.
[13] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 1981.
[14] 关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986.
[15] TRESEDER K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies[J]. New Phytologist, 2004, 164(2): 347-355.
[16] 彭少麟, 刘强. 森林凋落物动态及其对全球变暖的响应[J]. 生态学报, 2002, 22(9): 1 534-1 544.
[17] 郭培培, 江洪, 余树全, 等. 亚热带6种针叶和阔叶树种凋落叶分解比较[J]. 应用与环境生物学报, 2009, 15(5): 655-659.
[18] 胡亚林, 汪思龙, 黄宇, 等. 凋落物化学组成对土壤微生物学性状及土壤酶活性的影响[J]. 生态学报, 2005, 25(10): 2 662-2 668.
[19] 宋新章, 江洪, 马元丹, 等. 中国东部气候带凋落物分解特征: 气候和基质质量的综合影响[J]. 生态学报, 2009, 29(10): 5 219-5 226.
[20] 郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展[J]. 林业科学, 2006, 42(4): 93-100.
[21] 陈法霖, 郑华, 阳柏苏, 等. 中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响[J]. 生态学报, 2011, 31(11): 3 027-3 035.
[22] FRANKENBERGER W T J R, JOHANSON J B. Effect of pH on enzyme stability in soils[J]. Soil Biology and Biochemistry, 1982, 14(5): 433-437.
[23] 斯贵才, 袁艳丽, 王建, 等. 藏东南森林土壤微生物群落结构与土壤酶活性随海拔梯度的变化[J]. 微生物学通报, 2014, 41(10): 2 001-2 011.
[24] 高艳. 森林土壤可溶性有机氮研究现状[J]. 安徽农学通报, 2012, 18(24): 89-89.
[25] 袁颖红, 樊后保, 刘文飞, 等. 模拟氮沉降对杉木人工林(Cunninghamia lanceolata)土壤酶活性及微生物群落功能多样性的影响[J]. 土壤, 2013, 45(1): 120-128
[26] DEFOREST J L, ZAK D R, PREGITZER K S, et al. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests[J]. Soil Science Society of America Journal, 2004, 68(1): 132-138.
[27] 王晖, 莫江明, 薛璟花, 等. 氮沉降增加对森林凋落物分解酶活性的影响[J]. 热带亚热带植物学报, 2007, 14(6): 539-546.

相似文献/References:

[1]荣海,洪伟,吴承祯,等.模拟氮沉降对温郁金叶丛期叶面积形成的影响[J].森林与环境学报,2011,31(01):13.
 [J].,2011,31(02):13.
[2]蔡乾坤,段洪浪,刘文飞,等.氮沉降对杉木林土壤有效氮和磷含量的影响[J].森林与环境学报,2016,36(03):342.[doi:10.13324/j.cnki.jfcf.2016.03.015]
 CAI Qiankun,DUAN Honglang,LIU Wenfei,et al.Impacts of nitrogen deposition on soil available N and P contents in the Chinese fir plantation[J].,2016,36(02):342.[doi:10.13324/j.cnki.jfcf.2016.03.015]
[3]黄幸然,谢承劼,潘若琪,等.氮添加对马尾松和木荷幼苗根系土壤挥发性有机化合物的影响[J].森林与环境学报,2020,40(03):243.[doi:10.13324/j.cnki.jfcf.2020.03.003]
 HUANG Xingran,XIE Chengjie,PAN Ruoqi,et al.Effects of nitrogen addition on soil volatile organic compounds of Pinus massoniana and Schima superba seeding root zone soils[J].,2020,40(02):243.[doi:10.13324/j.cnki.jfcf.2020.03.003]

备注/Memo

备注/Memo:
收稿日期:2016-07-04;改回日期:2016-11-20。
基金项目:国家自然科学基金项目(41473083)。
作者简介:吴旺旺(1991-),男,见习工程师,从事环境生态学、土壤修复研究。E-mail:w.u55555@163.com。
通讯作者:易志刚(1973-),男,教授,博士,从事痕量气体界面交换、有机污染物生物地球化学循环研究。E-mail:zgyi@fafu.edu.cn。
更新日期/Last Update: 2017-05-03