[1]杨琳,马青原,刘洪海,等.尾巨桉木材冷冻干燥特性[J].森林与环境学报,2018,38(03):277-283.[doi:10.13324/j.cnki.jfcf.2018.03.004]
 YANG Lin,MA Qingyuan,LIU Honghai,et al.Freeze-drying properties of Eucalyptus urophylla×E. grandis wood[J].,2018,38(03):277-283.[doi:10.13324/j.cnki.jfcf.2018.03.004]
点击复制

尾巨桉木材冷冻干燥特性()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
38
期数:
2018年03期
页码:
277-283
栏目:
出版日期:
2018-07-15

文章信息/Info

Title:
Freeze-drying properties of Eucalyptus urophylla×E. grandis wood
作者:
杨琳 马青原 刘洪海 廖晓梅 吴智慧
南京林业大学家居与工业设计学院, 江苏 南京 210037
Author(s):
YANG Lin MA Qingyuan LIU Honghai LIAO Xiaomei WU Zhihui
College of Furniture and Industrial Design, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
关键词:
冷冻干燥木材皱缩干燥特性尾巨桉
Keywords:
freeze-dryingwood collapsedrying propertiesEucalyptus urophylla×E. grandis
分类号:
S781.71
DOI:
10.13324/j.cnki.jfcf.2018.03.004
摘要:
对尾巨桉(Eucalyptus urophylla×E.grandi)试件分别进行冷冻干燥(-50℃)和常规干燥(60℃、相对湿度66%),利用扫描仪结合ImageJ软件测定了干燥过程中木材的干缩率,检测了试件分层含水率,并对木材皱缩及回复情况进行SEM镜像观测。对不同含水率阶段试件在两种干燥条件下的干燥速度、含水率分布、干缩率及细胞的微观结构等进行了对比分析。结果表明:冷冻干燥的含水率-时间变化曲线与常规干燥类似,纤维饱和点(FSP)以上干燥快,FSP以下干燥慢。冷冻干燥能够形成并保持良好的水分迁移通道,导致干燥速度在FSP上下均快于常规干燥。在干燥初期及高含水率阶段,冷冻干燥试件的表心层含水率差异大,干燥梯度大。FSP以下两种试件含水率分布类似,含水率梯度趋于均匀,没有明显差别。冷冻干燥全干面积收缩率小于常规干燥,且受试件长度影响。对试件微观结构的扫描电子显微镜(SEM)观察发现,冷冻干燥皱缩细胞的数量及程度远小于常规干燥。冷冻干燥能够最大限度地保持细胞形态,显著减小木材皱缩程度,但不能完全避免木材皱缩。
Abstract:
Eucalyptus urophylla×E. grandis samples were dried by freeze-drying (FD) (-50℃) and conventional kiln drying (CKD) (60℃, 66%) respectively, the shrinkage curve was measured by scanner and ImageJ software, layered moisture content distribution was measured, collapse and recovery were mirror observed by SEM, and then the drying rate, moisture content (MC) distribution, shrinkage in area and the morphological feature of collapsed cells were compared and the effects of FD on the collapse was investigated as well.The results indicated that the curve of moisture-time of FD was similar with that of CKD, drying rate was fast above fiber saturated point (FSP) and became slow below FSP.Moisture migration channels were created and maintained during FD process and these new channels resulted in high drying rate at about FSP level. In the early stage of FD, the MC distribution was quite different from surface to middle and core layer and with great MC gradient compared with that of CKD.Below FSP, MC distribution of FD became even and the MC distribution was same with that of CKD.The total shrinkage rate of FD was smaller than that of CKD and which is affected by sample length.The quantity and extent of collapsed cells in FD were smaller than that of CKD through SEM observations.Freeze-drying could not avoid the collapse entirely, but it could maintain the shape of cells and decrease the cell collapse significantly.

参考文献/References:

[1] 黄广华, 陈瑞英.人工林巨尾桉木材性能与树龄的关系[J].福建林学院学报,2009,29(2):183-186.
[2] 苗平,张耀丽,庄寿增,等.尾巨桉木材的渗透性对皱缩的影响[J].南京林业大学学报(自然科学版),2010,34(5):83-86.
[3] 江泽慧,费本华,王喜明,等.桉树木材干燥特性与工艺及其皱缩研究现状[J].木材工业,2002,16(4):3-6.
[4] TIEMANN H D.Collapse in wood as shown by microscope [J].Journal of Forestry,1941,39(3): 271-282.
[5] 周永东,傅峰,李贤军,等.微波处理对桉木应力及微观构造的影响[J].北京林业大学学报,2009,31(2):146-150.
[6] HAYASHI K Z,TERAZAWA S.Studies on cell collapse of water saturated balsa wood,3: the effect of the tensile stress on the collapse intensity [J].Mokuzai Gakaishi,1975,21(5): 278-282.
[7] ANANIAS R A, SEPULVEDA-VILLARROEL V, PEREZ-PENA N, et al. Collapse of Eucalyptus nitens wood after drying depending on the radial location within the stem[J].Drying Technology,2014,32(14):1 699-1 705.
[8] BRYAN E L.Collapse and its removal in Pacific Madrone (Arbutus menziesii) [J].Forest Products Journal,1960,10(11):589-604.
[9] CHAFE S C.The effect of boiling on shrinkage, collapse and other wood-water properties in core segments of Eucalyptus regnans F. Muell[J].Wood Science and Technology,1993,27(3): 205-217.
[10] 张耀丽,苗平,庄寿增,等.微波、冷冻预处理对改善尾巨桉木材干燥性能的影响[J].南京林业大学学报(自然科学版),2011,35(2):61-64.
[11] 刘宏达.预热及预冻处理对尾巨桉物理性能的影响[D].北京:北京林业大学,2015.
[12] CHOONG E T.Effect of extractives on shrinkage and other hygroscopic properties of ten southern pine woods [J].Wood and Fiber Science,1969,19(1): 124-133.
[13] LV J X,LIN Z Y,JIANG J L,et al.Liquid penetration of freeze-drying and air-drying wood of plantation Chinese fir[J].Journal of Forestry Research,2005,16(4): 293-295.
[14] 左春丽,曹永建,周宇.桉树木材皱缩形成机制与调控研究进展[J].世界林业研究,2016,29(1):58-63.
[15] 李冬生,曾凡坤.食品高新技术[M].北京:中国计量出版社,2007:1-3.
[16] 吴福宝,张岚. 川杨河大型古木船室外冷冻脱水处理[J].文物保护与考古科学,1990,2(2):13-21.
[17] 任广跃,张伟,张乐道,等.多孔介质常压冷冻干燥质热耦合传递数值模拟[J].农业机械学报,2016,47(3):214-220.
[18] 李晖.常压冷冻干燥处理过程中气流场分布特性及模型的构建[D].洛阳: 河南科技大学,2014.
[19] CHOONG E T,MACKAY J F G,STEWART C M.Collapse and moisture flow in kiln-drying and freeze-drying of woods [J].Wood Science,1973,6(2):127-135.
[20] 蔡英春,陈广元,艾沐野,等.关于提高称重法木材含水率测算精度的探讨[J].北京林业大学学报,2005(s1):64-67.
[21] 郭树国.人参真空冷冻干燥工艺参数试验研究[D].沈阳: 沈阳农业大学,2012.
[22] ILIC J.Advantages of prefreezing for reducing shrinkage-related degrade in eucalypts: general considerations and review of the literature[J].Wood Science and Technology,1995,29(4):277-285.

备注/Memo

备注/Memo:
收稿日期:2017-12-06;改回日期:2018-03-20。
基金项目:国家自然科学基金青年项目(31500479);国家自然科学基金面上项目(31570558);南京林业大学高层次人才科研启动基金项目(GXL010);青蓝工程资助项目(164104841);南京林业大学大学生创新训练计划项目"冷冻干燥对桉树木材细胞形态的影响机制研究"(2017NFUSPITP333)。
作者简介:杨琳(1978-),女,副教授,博士,从事木材干燥及木材改性研究。Email:forest-yang@163.com。
通讯作者:刘洪海(1975-),男,副教授,博士,从事木材干燥及木材改性研究。Email:seaman-liu@163.com。
更新日期/Last Update: 1900-01-01