[1]曹磊,李海奎.广东省樟树相容性生物量模型的构建[J].森林与环境学报,2018,38(04):458-465.[doi:10.13324/j.cnki.jfcf.2018.04.012]
 CAO Lei,LI Haikui.Establishment and analysis of compatible biomass model for Cinnamomum camphora in Guangdong Province[J].,2018,38(04):458-465.[doi:10.13324/j.cnki.jfcf.2018.04.012]
点击复制

广东省樟树相容性生物量模型的构建()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
38
期数:
2018年04期
页码:
458-465
栏目:
出版日期:
2018-10-15

文章信息/Info

Title:
Establishment and analysis of compatible biomass model for Cinnamomum camphora in Guangdong Province
作者:
曹磊 李海奎
中国林业科学研究院资源信息研究所, 北京 100091
Author(s):
CAO Lei LI Haikui
Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
关键词:
广东省樟树生物量独立模型相容性模型
Keywords:
Guangdong ProvinceCinnamomum camphora (L.) J.Preslbiomassindividual modeladditive model
分类号:
S757
DOI:
10.13324/j.cnki.jfcf.2018.04.012
摘要:
单木生物量模型是林分生物量和碳储量估算的基础。利用广东省90株样木的生物量实测数据,采用非线性联合估计的方法,构建了樟树各组分与地上总量相兼容的生物量模型。以决定系数(R2)、总相对误差(ETR),平均相对误差(EMR)和平均预估误差(EMP)等指标检验模型的精度,并与独立模型相比较。同时,分径阶进行检验,并分析了樟树各组分占地上部分总生物量的比例。结果表明:地上部分生物量相容性模型预估精度达到90%以上,总相对误差和平均相对误差在3.0%以内,模型决定系数在0.90以上,预估效果较好;生物量相容性模型与独立模型相比,虽然总相对误差、平均预估误差和均方根误差(ERMS)较大,但平均相对误差较小,且模型保持了分量与总量较好的相容性,对于4 cm以下的小径阶立木来说,两种模型拟合效果均较差,但就2 cm小径阶而言,相容性模型较优于独立模型,而对于38 cm大径阶来说,独立模型略占优势;各组分中干材生物量比例最大,其次是树枝、干皮和树叶。各组分生物量占地上部分生物量比例随胸径增大变化趋势不同。应用非线性联合估计得到的广东省区域内相容性模型较好地预测了樟树单木生物量,且保持了各组分较好的相容性,模型的建立有助于广东省樟树生物量和碳储量的精准估算。
Abstract:
Single-tree biomass model is the basis of stand biomass and carbon storage. This paper used the joint nonlinear estimation to establish the compatible model with the measured datum of 90 trees of Cinnamomum camphora in Guangdong Province. The coefficient of determination (R2), total relative error (ETR), mean percent deviation (EMR) and mean percent estimate error (EMP) were used to evaluate the model accuracy. The compatible model was also compared with the individual model. The model for classified diameter class and the proportion for each component were also analyzed. The results showed:the estimate accuracy of compatible model reached over 90%. ETR and EMR were below 3.0% while R2 were more than 90.0%; compared with individual model, ETR, EMP and ERMS were slightly large while EMR was much smaller, but additive model maintained good compatibility between the total and components. For the small diameter below 4 cm, two models both performed poorly, however, compatible model performed better for the 2 cm diameter whereas individual model performed better for the 38 cm large diameter; the proportion of stem wood biomass accounted for the most of the aboveground and followed by branch, stem bark and foliage. With the increase of the diameter, the ratio of components showed different change. The compatible model established by the joint nonlinear estimation performed accurately and predicted well for single-tree and contributed to the accurate biomass estimation and carbon storage for C.camphora in Guangdong Province.

参考文献/References:

[1] WATSON R T,NOBLE I R,BOLIN B,et al.IPCC special report on land use,land-use change and forestry[M].Cambridge:Cambridge University Press,2000.
[2] CRONAN C S.Belowground biomass,production,and carbon cycling in mature Norway spruce,Maine,U.S.A.[J].Canadian Journal of Forest Research,2003,33(2):339-350.
[3] HOUGHTON R A.Aboveground forest biomass and the global carbon balance[J].Global Change Biology,2005,11(6):945-958.
[4] WOODBURY P B,SMITH J E,HEATH L S.Carbon sequestration in the U.S.forest sector from 1990 to 2010[J].Forest Ecology and Management,2007,241(1/2/3):14-27.
[5] 李海奎,雷渊才,曾伟生.基于森林清查资料的中国森林植被碳储量[J].林业科学,2011,47(7):7-12.
[6] TER-MIKAELIAN M T,KORZUKHIN M D.Biomass equations for sixty-five North American tree species[J].Forest Ecology and Management,1997,97(1):1-24.
[7] BOND-LAMBERTY B,WANG C,GOWER S T.Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba[J].Canadian Journal of Forest Research,2002,32(8):1 441-1 450.[JP]
[8] JENKINS J C,BIRDSEY R A,PAN Y D.Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data[J].Ecological Applications,2001,11(4):1 174-1 193.
[9] WARING R H,RUNNING S W.Forest ecosystems:analysis at multiple scales[M].2nd ed.San Diego:Academic Press,1998.
[10] 唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000,36(S1):19-27.
[11] 骆期邦,曾伟生,贺东北,等.立木地上部分生物量模型的建立及其应用研究[J].自然资源学报,1999,14(3):271-277.
[12] 胥辉,刘伟平.相容性生物量模型研究[J].福建林学院学报,2001,21(1):18-23.
[13] TANG S Z,LI Y,WANG Y H.Simultaneous equations,error-in-variable models,and model integration in systems ecology[J].Ecological Modelling,2001,142(3):285-294.
[14] TANG S Z,WANG Y H.A parameter estimation program for the error-in-variable model[J].Ecological Modelling,2002,156(2/3):225-236.
[15] ZENG W S,ZHANG H R,TANG S Z.Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales:a case study for Masson pine (Pinus massoniana) in southern China[J].Canadian Journal of Forest Research,2011,41(7):1 547-1 554.
[16] 曾伟生,唐守正.利用度量误差模型方法建立相容性立木生物量方程系统[J].林业科学研究,2010,23(6):797-803.
[17] 符利勇,雷渊才,曾伟生.几种相容性生物量模型及估计方法的比较[J].林业科学,2014,50(6):42-54.
[18] 符利勇,雷渊才,孙伟,等.不同林分起源的相容性生物量模型构建[J].生态学报,2014,34(6):1 461-1 470.
[19] PARRESOL B R.Assessing tree and stand biomass:a review with examples and critical comparisons[J].Forest Science,1999,45(4):573-593.
[20] PARRESOL B R.Additivity of nonlinear biomass equations[J].Canadian Journal of Forest Research,2001,31(5):865-878.
[21] BI H Q,BIRK E,TURNER J,et al.Converting stem volume to biomass with additivity,bias correction,and confidence bands for two Australian tree species[J].New Zealand Journal of Forestry Science,2001,31(3):298-319.
[22] BI H Q,TURNER J,LAMBERT M J.Additive biomass equations for native eucalypt forest trees of temperate Australia[J].Trees,2004,18(4):467-479.
[23] BASKERVILLE G L.Use of logarithmic regression in the estimation of plant biomass[J].Canadian Journal of Forest Research,1972,2(1):49-53.
[24] 曾伟生,骆期邦,贺东北.论加权回归与建模[J].林业科学,1999,35(5):5-11.
[25] 张会儒,唐守正,胥辉.关于生物量模型中的异方差问题[J].林业资源管理,1999(1):46-49.
[26] 唐守正,郎奎建,李海奎.统计和生物数学模型计算(ForStat教程)[M].北京:科学出版社,2009.
[27] KOZAK A,KOZAK R.Does cross validation provide additional information in the evaluation of regression models?[J].Canadian Journal of Forest Research,2003,33(6):976-987.
[28] 曾伟生,唐守正.立木生物量方程的优度评价和精度分析[J].林业科学,2011,47(11):106-113.
[29] BERK K N.Validating regression procedures with new data[J].Technometrics,1984,26(4):331-338.
[30] SHAO J.Linear model selection by cross-validation[J].Journal of the American statistical Association,1993,88(422):486-494.

相似文献/References:

[1]陈瑞炎.不同修剪强度对樟树生长的影响[J].森林与环境学报,2010,30(02):154.
 [J].,2010,30(04):154.
[2]张晓阳,吴松,王美鑫,等.福建省樟树溃疡病病原菌的分离与鉴定[J].森林与环境学报,2020,40(03):306.[doi:10.13324/j.cnki.jfcf.2020.03.011]
 ZHANG Xiaoyang,WU Song,WANG Meixin,et al.Isolation and identification of camphor tree canker disease pathogen in Fujian Province[J].,2020,40(04):306.[doi:10.13324/j.cnki.jfcf.2020.03.011]
[3]王宁,袁美丽,安瑞云.低温对樟树抗寒性生理指标的影响[J].森林与环境学报,2020,40(05):512.[doi:10.13324/j.cnki.jfcf.2020.05.008]
 WANG Ning,YUAN Meili,AN Ruiyun.Effects of low temperature on the cold resistance physiology index of camphor tree[J].,2020,40(04):512.[doi:10.13324/j.cnki.jfcf.2020.05.008]

备注/Memo

备注/Memo:
收稿日期:2018-04-09;改回日期:2018-06-09。
基金项目:广东省林业科技专项"广东主要碳汇造林树种生物量模型研建"(2015-02);广东省林业科技创新平台建设项目"广东省碳汇计量监测创新平台建设"(2016CXPT03)。
作者简介:曹磊(1994-),男,硕士研究生,从事林业统计与生物数学模型研究。Email:caolei94@139.com。
通讯作者:李海奎(1965-),男,研究员,从事林业统计与生物数学模型研究。Email:lihk@caf.ac.cn。
更新日期/Last Update: 1900-01-01