[1]李树斌,周丽丽,陈宝英,等.亚热带树种转换对林地土壤碳氮磷计量比的影响[J].森林与环境学报,2019,39(06):575-583.[doi:10.13324/j.cnki.jfcf.2019.06.003]
 LI Shubin,ZHOU Lili,CHEN Baoying,et al.Effects of tree species transition on stoichiometric ratios of soil carbon, nitrogen and phosphorus in subtropical areas[J].,2019,39(06):575-583.[doi:10.13324/j.cnki.jfcf.2019.06.003]
点击复制

亚热带树种转换对林地土壤碳氮磷计量比的影响()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
39卷
期数:
2019年06期
页码:
575-583
栏目:
出版日期:
2019-11-15

文章信息/Info

Title:
Effects of tree species transition on stoichiometric ratios of soil carbon, nitrogen and phosphorus in subtropical areas
作者:
李树斌12 周丽丽34 陈宝英12 杨起帆1 丁国昌56 林思祖12
1. 福建农林大学林学院, 福建 福州 350002;
2. 国家林业和草原局杉木工程技术研究中心, 福建 福州 350002;
3. 闽江学院海洋研究院, 福建 福州 350108;
4. 人工林可持续经营福建省高校工程研究中心, 福建 福州 350002;
5. 福建农林大学园林学院, 福建 福州 350002;
6. 国家林业和草原局森林公园工程技术研究中心, 福建 福州 350007
Author(s):
LI Shubin12 ZHOU Lili34 CHEN Baoying12 YANG Qifan1 DING Guochang56 LIN Sizu12
1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;
2. Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou, Fujian 350002, China;
3. Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China;
4. Fujian Provincial Colleges and University Engineering Research Center of Plantation Sustainable Management, Fuzhou, Fujian 350002, China;
5. College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;
6. National Engineering Research Center for Forest Parks of the State Forestry and Grassland Administration, Fuzhou, Fujian 350007, China
关键词:
杉木尾巨桉黑木相思养分循环碳氮磷生态化学计量
Keywords:
C. lanceolataE. urophylla×E. grandisA. melanoxylonnutrient cyclingcarbon nitrogen and phosphorus stoichiometry
分类号:
S718.5;X171.1
DOI:
10.13324/j.cnki.jfcf.2019.06.003
摘要:
通过分析杉木采伐迹地营造阔叶树种尾巨桉及固氮树种黑木相思后土壤碳氮磷化学计量特征及其与土壤理化性质的相关关系,探讨造林树种转换对林地养分及生态化学计量的影响规律,以期为杉木人工林可持续经营提供理论依据。结果表明:杉木、尾巨桉和黑木相思土壤全碳(TC)、全氮(TN)和全磷(TP)分别为19.28~23.84、1.56~1.87和0.27~0.30 g·kg-1,各土层TC和TN均表现为尾巨桉和黑木相思较高,在表层(0~10 cm)和下层(20~40 cm)差异显著(P<0.05),表层和下层黑木相思人工林土壤TP显著高于杉木人工林;3种林分土壤C∶N、C∶P和N∶P分别为11.89~13.44、68.31~87.18和5.55~6.38,各土层C∶N和C∶P均表现为尾巨桉 > 黑木相思 > 杉木,中层(10~20 cm)土壤N∶P表现为尾巨桉和黑木相思林分显著高于杉木(P<0.05);土壤生态化学计量比与土壤理化性质相关规律明显,土壤C∶N、C∶P和N∶P与土壤TC、TN极显著正相关,与土壤pH值、土壤容重极显著负相关,与土壤最大持水量、非毛管孔隙度显著正相关。因此,在森林经营和森林恢复过程中,应重视如何调整树种组成,阔叶树种桉树和固氮树种黑木相思有助于提高杉木林地土壤TC、TN、TP含量及C∶N、C∶P和N∶P值,有利于人工林退化地养分的良性循环。
Abstract:
A comparative study was carried out to analyze the characteristics of soil carbon, nitrogen and phosphorus stoichiometric and their correlation with soil physicochemical properties among Cunninghamia lanceolata, Eucalyptus urophylla×E. grandis(a broad-leaved species), and Acacia melanoxylon(an N-fixing species). We examined the effects of transitioning these tree species on soil nutrients and their stoichiometric characteristics in order to provide a scientific basis for the sustainable management of Chinese fir plantations. The results showed that:total carbon(TC), total nitrogen(TN), and total phosphorus(TP) content in soil from C. lanceolata, E. urophylla×E. grandis and A. melanoxylon plantations were 19.28~23.84, 1.56~1.87, and 0.27~0.30 g·kg-1, respectively. TC and TN were higher in E. urophylla×E. grandis and A. melanoxylon plantations and were significantly different between the soil layers:surface soil(0~10 cm) and lower soil(20~40 cm). TP in the surface soil and lower soil layers was significantly higher in A. melanoxylon plantations than in C. lanceolata plantations. The soil C:N, C:P, and N:P ratios of the three plantations were 11.89~13.44, 68.31~87.18, and 5.55~6.38, respectively. The increasing order of soil C:N and C:P ratio was E. urophylla×E. grandis > A. melanoxylon > C. lanceolata, and the middle-soil layer N:P was significantly higher in E. urophylla×E. grandis plantations and A. melanoxylon. Soil carbon, nitrogen and phosphorus stoichiometric ratios showed obvious correlations with physicochemical variables. Soil C:N, C:P, and N:P ratios were significantly positively correlated with TC and TN and negatively correlated with soil pH and soil bulk density. These stoichiometric ratios were significantly positively correlated with the maximum water-holding capacity and non-capillary porosity of the soil. Therefore, it is critical to adjust tree species composition during forest management and restoration process. Reforestation with E. grandis and A. melanoxylon on C. lanceolata harvested site could improve soil TC, TN, and TP, and C:N, C:P, and N:P ratios, which contribute to the virtuous cycling of soil nutrients in degraded plantations.

参考文献/References:

[1] 贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报,2010,34(1):2-6.
[2] Hann W X,FANG J Y,GUO D L,et al.Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J].New Phytologist,2005,168(2):377-385.
[3] 任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学,2007,28(12):2665-2673.
[4] 阎恩荣,王希华,郭明,等.浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征[J].植物生态学报,2010,34(1):48-57.
[5] 吕金林,闫美杰,宋变兰,等.黄土丘陵区刺槐、辽东栎林地土壤碳、氮、磷生态化学计量特征[J].生态学报,2017,37(10):3385-3393.
[6] YANG Y H,FANG J Y,GUO D L,et al.Vertical patterns of soil carbon,nitrogen and carbon:nitrogen stoichiometry in Tibetangrass lands[J].Biogeosciences Discus,2010,7(1):1-24.
[7] KNOPS J M,BRADLEY K L,WEDIN D A.Mechanisms of plant species impacts on ecosystem nitrogen cycling[J].Ecology Letters,2002,5:454-466.
[8] ZHOU L L,SHALOM A D D,WU P F,et al.Litterfall production and nutrient return in different-aged Chinese fir (Cunninghamia lanceolata) plantations in South China[J].Journal of Forestry Research,2015,26(1):79-89.
[9] RESH S C,DAN B,PARROTTA J A.Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species[J].Ecosystems,2002,5(3):217-231.
[10] 丁国昌,万晓华,杨起帆,等.亚热带树种转换对林地土壤微生物群落结构和功能的影响[J].应用生态学报,2017,28(11):3751-3758.
[11] USHIO M,KITAYAMA K,BALSER T C.Tree species effects on soil enzyme activities through effects on soil physicochemical and microbial properties in a tropical montane forest on Mt.Kinabalu,Borneo[J].Pedobiologia,2010,53(4):227-233.
[12] LUO D,CHENG R M,SHI Z M,et al.Impacts of nitrogen-fixing and non-nitrogen-fixing tree species on soil respiration and microbial community composition during forest management in subtropical China[J].Ecological Research,2016,31(5):683-693.
[13] CAO Y,CHEN Y.Ecosystem C:N:P stoichiometry and carbon storage in plantation a secondary forest on the Loess Plateau,China[J].Ecological Engineering,2017,105:125-132.
[14] MA X Q,HEAL K V,LIU A Q,et al.Nutrient cycling and distribution in different-aged plantations of Chinese fir in southern China[J].Forest Ecology Management,2007,243(1):61-74.
[15] 俞新妥.关于福建省树种结构调整问题的几点思考[J].福建林业科技,2002(2):1-3.
[16] 曹娟,闫文德,项文化,等.湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J].林业科学,2015,51(7):1-8.
[17] OOSTRA S,MAJDI H,OLSSON M.Impact of tree species on soil carbon stocks and soil acidity in southern Sweden[J].Scandinavian Journal of Forest Research,2006,21:364-371.
[18] 国家林业局.中华人民共和国林业行业标准:森林土壤分析方法:LY/T 1275-1999[S].北京:中国标准出版社,1999.
[19] TIAN H Q,CHEN G S,ZHANG C,et al.Pattern and variation of C:N:P ratios in China’s soils:synthesis of observational data[J].Biogeochemistry,2010,98(1/2/3):139-151.
[20] 张芸,李惠通,张辉,等.不同林龄杉木人工林土壤C:N:P化学计量特征及其与土壤理化性质的关系[J].生态学报,2019,39(7):2520-2531.
[21] 邱岭军,胡欢甜,林宝平,汪凤林,等.不同林龄杉木养分重吸收率及其C:N:P化学计量特征[J].西北林学院学报,2017,32(4):22-27.
[22] 汪涛,杨元合,马文红.中国土壤磷库的大小、分布及其影响因素[J].北京大学学报(自然科学版),2008,44(6):945-952.
[23] 喻林华,方晰,项文化,等.亚热带4种林分类型枯落物层和土壤层的碳氮磷化学计量特征[J].林业科学,2016,52(10):10-21.
[24] 庞圣江,张培,贾宏炎,等.桂西北不同森林类型土壤生态化学计量特征[J].中国农学通报,2015,31(1):17-23.
[25] 刘兴诏,周国逸,张德强,等.南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J].植物生态学报,2010,34(1):64-71.
[26] WANG F M,LI Z A,XIA H P,et al.Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China[J].Soil Science and Plant Nutrition,2010,56(2):297-306.
[27] CHEN M,AN S S.Responses of soil nitrogen,phosphorous and organic matter to vegetation succession on the Loess Plateau of China[J].Journal of Arid Land,2015,7(2):216-223.
[28] 盛炜彤,范少辉,马祥庆,等.杉木人工林长期生产力保持机制研究[M].北京:科学出版社,2005:153-156.
[29] 方运霆,莫江明,PER G,等.森林土壤氮素转换及其对氮沉降的响应[J].生态学报,2004,24(7):1523-1531.
[30] BATJES N H.Total carbon and nitrogen in the soils of the world[J].Europe Journal of Soils Science,1996,47(2):151-163.
[31] 段春燕,徐广平,沈育伊,等.桂北不同林龄桉树人工林土壤生态化学计量特征[J].林业资源管理,2018(6):119-126.
[32] 张治军,李慧,王志超,等.4个尾巨桉幼林林地土壤生态化学计量特征[J].桉树科技,2014(4):23-26.
[33] MAJDA H,OHRVIK J.Interactive effects of soil warming and fertilization on root production,mortality in Norway spruce stand in Northern Sweden[J].Global Change Biology,2001,10(2):182-188.
[34] 俞新妥.杉木栽培学[M].福州:福建科学技术出版社,1997:155-157.
[35] 王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8):3937-3947.
[36] 张利丽.不同林龄尾巨桉人工林C、N、P、K生态化学计量特征[D].北京:中国林业科学研究院,2016.
[37] 邵宜晶,俞梦笑,江军,等.鼎湖山3种演替阶段森林土壤C、N、P现状及动态[J].热带亚热带植物学报,2017(6):523-530.
[38] 张雨鉴,王克勤,宋娅丽,等.滇中亚高山5种林型土壤碳氮磷生态化学计量特征[J].生态环境学报,2019,28(1):73-82.
[39] 何俊杰,陈小梅,冯思红,等, 2016.城郊梯度上南亚热带季风常绿阔叶林土壤C、N、P化学计量特征[J].生态学杂志,2016,35(3):591-596.
[40] GUSEWELL S,KOERSELMAN W,VERHOEVEN J T A.Biomass N:P as indicators of nutrient limitation for plant populations in wetlands[J].Ecological Applications,2003,13(2):372-384.
[41] 张泰东,王传宽,张全智.帽儿山5种林型土壤碳氮磷化学计量关系的垂直变化[J].应用生态学报,2017,28(10):3135-3143.
[42] 秦娟,孔海燕,刘华.马尾松不同林型土壤C、N、P、K的化学计量特征[J].西北农林科技大学学报(自然科学版),2016,44(2):68-76.
[43] BENGTSON G,BENTSON P,MANSSON K F.Gross nitrogen mineralization,immobilization,and nitrification rates as a function of soil C/N ratio and microbial activity[J].Soil Biology and Biochemistry,2003,35(1):143-154.
[44] 李从娟,雷加强,徐新文,等.塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征[J].生态学报,2013,33(18):5760-5767.
[45] 俞月凤,彭晚霞,宋同清,等.喀斯特峰丛洼地不同森林类型植物和土壤C、N、P化学计量特征[J].应用生态学报,2014,25(4):947-954.

相似文献/References:

[1]林 晗,吴承祯,陈 辉,等.杉木—千年桐人工混交林种内种间竞争关系分析[J].森林与环境学报,2014,34(04):316.
[2]张 勇.沿海沙地尾巨桉叶绿素荧光参数动态研究[J].森林与环境学报,2014,34(04):344.
[3]赵中华,刘爱琴,吴鹏飞,等.低磷胁迫下杉木针叶蛋白的提取与表达差异分析[J].森林与环境学报,2014,34(03):203.
[4]李林源.23年生杉木第2代种子园自由授粉子代测定林分析及选择[J].森林与环境学报,2013,33(04):351.
 LI Lin-yuan.Analysis and selection for 23 years old open-pollinated progeny test of the 2nd generation seed orchard in Cunninghamia lanceolata[J].,2013,33(06):351.
[5]郑金兴,熊德成,黄锦学,等.中龄和老龄杉木人工林凋落物量及养分归还[J].森林与环境学报,2013,33(01):18.
 ZHENG Jin-xing,XIONG De-cheng,HUANG Jin-xue,et al.Litter production and nutrient return in 2 plantations of young and old Cunninghamia lanceolata[J].,2013,33(06):18.
[6]汪婷,张莉莉,胡永颜,等.不同耐铝型杉木优良家系早期筛选[J].森林与环境学报,2013,33(02):124.
 WANG Ting,ZHANG Li-li,HU Yong-yan,et al.Selection of different types of aluminum-tolerance Cunninghamia lanceolata superior families[J].,2013,33(06):124.
[7]陈奶莲,汪攀,吴鹏飞,等.匀强电场对杉木外植体芽诱导的影响[J].森林与环境学报,2015,35(01):13.[doi:10.13324/j.cnki.jfcf.2015.01.003]
[8]刘圣恩,林开敏,郑文辉,等.杉木研究科技文献计量分析[J].森林与环境学报,2015,35(01):19.[doi:10.13324/j.cnki.jfcf.2015.01.004]
[9]何琳琳,吴鹏飞,张云鹏,等.杉木人工林细根不同根序形态和碳氮含量的比较[J].森林与环境学报,2015,35(02):112.[doi:DOI: 10.13324/j.cnki.jfcf.2015.02.003]
[10]陈奶莲,汪攀,吴鹏飞,等.不同杉木半同胞家系种子生物学特性的差异[J].森林与环境学报,2015,35(03):230.[doi:10.13324/j.cnki.jfcf.2015.03.008]

备注/Memo

备注/Memo:
收稿日期:2019-07-30;改回日期:2019-10-18。
基金项目:国家自然科学基金项目(31800532);福建省自然科学基金项目(2018J05059);福建省林业厅科技项目([2019]16号);福建农林大学科技创新专项(CXZX2017106);人工林可持续经营福建省高校工程研究中心开放课题(PSM-2017002)。
作者简介:李树斌(1986-),男,博士研究生,从事森林培育研究。Email:fjlishubin@126.com。
通讯作者:林思祖(1953-),男,教授,博士,博士生导师,从事森林培育研究。Email:szlin53@126.com。
更新日期/Last Update: 1900-01-01