LU Shengxu,XU Enlan,WU Dongmei,et al.Response of soil microbial community composition on litterfall input in a Castanopsis carlesii plantation[J].,2020,40(01):16-23.[doi:10.13324/j.cnki.jfcf.2020.01.003]





Response of soil microbial community composition on litterfall input in a Castanopsis carlesii plantation
卢胜旭12 许恩兰12 吴东梅12 陆宇明12 郭剑芬12 杨玉盛12
1. 福建师范大学湿润亚热带生态地理过程教育部重点实验室, 福建 福州 350007;
2. 福建师范大学地理研究所, 福建 福州 350007
LU Shengxu12 XU Enlan12 WU Dongmei12 LU Yuming12 GUO Jianfen12 YANG Yusheng12
1. Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China;
2. Institute of Geography, Fujian Normal University, Fuzhou, Fujian 350007, China
Castanopsis carlesii (Hemsl.) Hayatamicrobeammonium nitrogenlitterfallredundancy analysis
全球气候变化显著影响森林凋落物数量,进而会对土壤微生物群落造成影响。本研究以亚热带米槠人工林为研究对象,探究不同凋落物量输入处理(凋落物去除、凋落物加倍、对照)下,森林土壤微生物群落组成的变化。结果表明:与去除凋落物相比,凋落物加倍后0~10 cm土壤铵态氮(NH4+-N)、硝态氮(NO3--N)、全氮(TN)、有效磷(AP)含量分别显著增加了30.30%、49.66%、12.77%和13.90%。与对照相比,凋落物加倍与去除处理土壤微生物生物量碳(MBC)和氮(MBN)含量分别显著增加和下降(P<0.05),但凋落物加倍与去除处理间无显著差异。凋落物加倍处理下土壤丛枝菌根真菌(AMF)、革兰氏阳性菌[G(+)]、革兰氏阴性菌[G(-)]、放线菌(ACT)、真菌(F)丰度和总磷脂脂肪酸(TPLFA)含量分别比去除凋落物处理的土壤高68.35%、63.35%、82.65%、69.02%、40.56%和65.85%,而土壤革兰氏阳性菌与阴性菌比值、真菌与细菌比值则分别降低11.64%和26.67%。冗余度分析表明,铵态氮是影响该人工林土壤微生物群落组成的最主要环境因子。可见凋落物输入量变化改变了土壤养分有效性,进而显著影响了土壤微生物群落组成,这对进一步深入探究全球气候变化对亚热带森林土壤养分循环的影响具有重要意义。
Global climate change will affect the amounts of forest littersfall, and then affect the biogeochemical cycle of soil. In this study, soil microbial community composition under different litter input treatments (no litter, double litter, control) were measured in a subtropical Castanopsis carlesii plantation. The results showed that the content of soil ammonium nitrogen, nitrate nitrogen, total nitrogen and available phosphorus in double litter treatment were 30.30%, 49.66%, 12.77% and 13.90% higher than those in no litter treatment, respectively. Compared with the control, soil microbial biomass carbon (MBC) and nitrogen (MBN) contents in double litter treatment increased significantly while decreased in the litter removal treatment. There was no significant difference in soil MBC and MBN between double litter and litter removal treatments. The abundance of arbuscular mycorrhizal fungi, G(+) bacteria and G (-) bacteria, actinomyces, and fungi as well as total phospholipid fatty acid content in double litter treatment were 68.35%, 63.35%, 82.65%, 69.02%, 40.56% and 65.85% higher than those in litter removal treatment, respectively, while the ratio of gram positive bacteria to negative bacteria and fungi to bacteria were 11.64% and 26.67% lower than those in litter removal treatment. Redundancy analysis showed that ammonium nitrogen and pH value were the most important environmental factors affecting the composition of soil microbial community in the plantation. Different litter input changed soil nutrient availability, and then significantly affected the soil microbial community composition. It is of great significance for further understanding of global climate change effects on soil nutrient cycling in subtropical forests.


[1] PAN F J,ZHANG W,LIANG Y M,et al.Increased associated effects of topography and litter and soil nutrients on soil enzyme activities and microbial biomass along vegetation successions in karst ecosystem,southwestern China[J].Environmental Science and Pollution Research,2018,25(17):16979-16990.
[2] SAUVADET M,CHAUVAT M,FANIN N,et al.Comparing the effects of litter quantity and quality on soil biota structure and functioning:application to a cultivated soil in Northern France[J].Applied Soil Ecology,2016,107:261-271.
[3] MUELLER K E,HOBBIE S E,OLEKSYN J,et al.Do evergreen and deciduous trees have different effects on net N mineralization in soil?[J].Ecology,2012,93(6):1463-1472.
[4] 万晓华,黄志群,何宗明,等.改变碳输入对亚热带人工林土壤微生物生物量和群落组成的影响[J].生态学报,2016,36(12):3582-3590.
[5] JUNG M,REICHSTEIN M,SCHWALM C R,et al.Compensatory water effects link yearly global land CO2 sink changes to temperature[J].Nature,2017,541(7638):516-520.
[6] IVERSEN C,NORBY R.Terrestrial plant productivity and carbon allocation in a changing climate[M]//FREEDMAN B.Global Environmental Change.Dordrecht:Springer,2014.
[7] XU X T,PIAO S L,WANG X H,et al.Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades[J].Environmental Research Letters,2012,7(3):035701.
[8] COUTURE J J,MEEHAN T D,RUBERT-NASON K F,et al.Effects of elevated atmospheric carbon dioxide and tropospheric ozone on phytochemical composition of trembling aspen (Populus tremuloides) and Paper Birch (Betula papyrifera)[J].Journal of Chemical Ecology,2017,43(1):26-38.
[9] ZHAO M S,RUNNING S W.Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J].Science,2010,329(5994):940-943.
[10] LIU X,FU Z Y,ZHANG B,et al.Effects of sulfuric,nitric,and mixed acid rain on Chinese fir sapling growth in Southern China[J].Ecotoxicology and Environmental Safety,2018,160:154-161.
[11] PREVOST-BOURE N C,MARON P A,RANJARD L,et al.Seasonal dynamics of the bacterial community in forest soils under different quantities of leaf litter[J].Applied Soil Ecology,2011,47(1):14-23.
[12] NADELHOFFER K J,BOONE R D,BOWDEN R D,et al.The DIRT experiment:litter and root influences on forest soil organic matter stocks and function[M]//FOSTER D,ABER J.Forests in Time:the environmental consequences of 1000 years of change in New England.New Haven:Yale University Press,2004:300-315.
[13] TóTH J A,LAJTHA K,KOTROCZóZ,et al.The effect of climate change on soil organic matter decomposition[J].Acta Silvatica et Lignaria Hungarica,2007,3:75-85.
[14] 吴君君,杨智杰,翁发进,等.米槠天然林和人工林土壤呼吸的比较研究[J].环境科学,2014,35(6):2426-2432.
[15] VANCE E D,BROOKES P C,JENKINSON D S.An extraction method for measuring soil microbial biomass C[J].Soil Biology and Biochemistry,1987,19(6):703-707.
[16] BUYER J S,TEASDALE J R,ROBERTS D P,et al.Factors affecting soil microbial community structure in tomato cropping systems[J].Soil Biology and Biochemistry,2010,42(5):831-841.
[17] OLSSON P A.Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil[J].FEMS Microbiology Ecology,1999,29(4):303-310.
[18] ZANG H D,BLAGODATSKAYA E,WANG J Y,et al.Nitrogen fertilization increases rhizodeposit incorporation into microbial biomass and reduces soil organic matter losses[J].Biology and Fertility of Soils,2017,53(4):419-429.
[19] PARRENT J L,VILGALYS R.Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization[J].New Phytologist,2007,176(1):164-174.
[20] FROSTEG?RD ?,TUNLID A,B??TH E.Use and misuse of PLFA measurements in soils[J].Soil Biology and Biochemistry,2011,43(8):1621-1625.
[21] SWALLOW M,QUIDEAU S A,MACKENZIE M D,et al.Microbial community structure and function:the effect of silvicultural burning and topographic variability in northern Alberta[J].Soil Biology and Biochemistry,2009,41(4):770-777.
[22] 胡嵩,张颖,史荣久,等.长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化[J].应用生态学报,2013,24(2):366-372.
[23] ZHOU X Q,CHEN C R,WANG Y F,et al.Soil extractable carbon and nitrogen,microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland[J].Geoderma,2013,206:24-31.
[24] 李延茂,胡江春,汪思龙,等.森林生态系统中土壤微生物的作用与应用[J].应用生态学报,2004,15(10):1943-1946.
[25] GARCíA-PALACIOS Pablo,IVáN Prieto,JEAN-MARC Ourcival,et al.Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall[J].Ecosystems,2016,19(3):490-503.
[26] LYU M,XIE J S,VADEBONCOEUR M A,et al.Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils[J].Biology and Fertility of Soils,2018,54(8):925-934.
[27] CLEVELAND C C,NEFF J C,TOWNSEND A R,et al.Composition,dynamics,and fate of leached dissolved organic matter in terrestrial ecosystems:results from a decomposition experiment[J].Ecosystems,2004,7(3):275-285.
[28] CROW S E,LAJTHA K,BOWDEN R D,et al.Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest[J].Forest Ecology and Management,2009,258(10):2224-2232.
[29] 魏翠翠,刘小飞,林成芳,等.凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J].植物生态学报,2018,42(6):692-702.
[30] RICHARDSON A E.Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants[J].Australian Journal of Plant Physiology,2001,28(9):897-906.
[31] FENG W T,ZOU X M,SCHAEFER D.Above-and belowground carbon inputs affect seasonal variations of soil microbial biomass in a subtropical monsoon forest of southwest China[J].Soil Biology and Biochemistry,2009,41(5):978-983.
[32] LI Y Q,XU M,SUN O J,et al.Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests[J].Soil Biology and Biochemistry,2004,36(12):2111-2114.
[33] HOOKER T D,STARK J M.Soil C and N cycling in three semiarid vegetation types:response to an in situ pulse of plant detritus[J].Soil Biology and Biochemistry,2008,40(10):2678-2685.
[34] BRANT J B,SULZMAN E W,MYROLD D D.Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation[J].Soil Biology and Biochemistry,2006,38(8):2219-2232.
[35] 桑昌鹏,万晓华,余再鹏,等.凋落物和根系去除对滨海沙地土壤微生物群落组成和功能的影响[J].应用生态学报,2017,28(4):1184-1196.
[36] CROW S E,LAJTHA K,FILLEY T R,et al.Sources of plant-derived carbon and stability of organic matter in soil:implications for global change[J].Global Change Biology,2009,15(8):2003-2019.
[37] 张圣喜,陈法霖,郑华.土壤微生物群落结构对中亚热带三种典型阔叶树种凋落物分解过程的响应[J].生态学报,2011,31(11):3020-3026.
[38] ZHAO Q,CLASSEN A T,WANG W W,et al.Asymmetric effects of litter removal and litter addition on the structure and function of soil microbial communities in a managed pine forest[J].Plant and Soil,2017,414(1/2):81-93.
[39] 赵盼盼,周嘉聪,林开淼,等.海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响[J].生态学报,2019,39(6):2215-2225.
[40] 楚海燕,李若南,李靖雯,等.中亚热带森林转换对土壤微生物群落结构的影响[J].应用与环境生物学报,2019,25(1):23-28.
[41] WANG Q K,HE T X,WANG S L,et al.Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest[J].Agricultural and Forest Meteorology,2013,178-179:152-160.
[42] FENG X J,SIMPSON M J.Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality[J].Soil Biology and Biochemistry,2009,41(4):804-812.
[43] DJUKIC I,ZEHETNER F,WATZINGER A,et al.In situ carbon turnover dynamics and the role of soil microorganisms therein:a climate warming study in an Alpine ecosystem[J].FEMS Microbiology Ecology,2013,83(1):112-124.
[44] HUANG C Y,JIEN S H,CHEN T H,et al.Soluble organic C and N and their relationships with soil organic C and N and microbial characteristics in moso bamboo (Phyllostachys edulis) plantations along an elevation gradient in Central Taiwan[J].Journal of Soils and Sediments,2014,14(6):1061-1070.
[45] 张坤,包维楷,杨兵,等.林下植被对土壤微生物群落组成与结构的影响[J].应用与环境生物学报,2017,23(6):1178-1184.
[46] 潘萍,赵芳,欧阳勋志,等.马尾松林两种林下植被土壤碳氮特征及其与凋落物质量的关系[J].生态学报,2018,38(11):3988-3997.
[47] 罗达,史作民,李东胜.枯落物处理对格木林土壤碳氮转化和微生物群落结构的短期影响[J].应用生态学报,2018,29(7):2259-2268.


 JIN Long,WU Zhixiang,YANG Chuan,et al.Comparison of microorganism in rubber leaf-litter decomposition under different environments[J].,2016,36(01):73.[doi:10.13324/j.cnki.jfcf.2016.01.012]


更新日期/Last Update: 1900-01-01