[1]黄幸然,谢承劼,潘若琪,等.氮添加对马尾松和木荷幼苗根系土壤挥发性有机化合物的影响[J].森林与环境学报,2020,40(03):243-250.[doi:10.13324/j.cnki.jfcf.2020.03.003]
 HUANG Xingran,XIE Chengjie,PAN Ruoqi,et al.Effects of nitrogen addition on soil volatile organic compounds of Pinus massoniana and Schima superba seeding root zone soils[J].,2020,40(03):243-250.[doi:10.13324/j.cnki.jfcf.2020.03.003]
点击复制

氮添加对马尾松和木荷幼苗根系土壤挥发性有机化合物的影响()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
40
期数:
2020年03期
页码:
243-250
栏目:
出版日期:
2020-05-15

文章信息/Info

Title:
Effects of nitrogen addition on soil volatile organic compounds of Pinus massoniana and Schima superba seeding root zone soils
作者:
黄幸然12 谢承劼12 潘若琪12 徐亚3 郑丽丽12 易志刚12
1. 福建农林大学资源与环境学院, 福建 福州 350002;
2. 福建农林大学土壤环境健康与调控 福建省重点实验室, 福建 福州 350002;
3. 福建省环境监测中心站, 福建 福州 350002
Author(s):
HUANG Xingran12 XIE Chengjie12 PAN Ruoqi12 XU Ya3 ZHENG Lili12 YI Zhigang12
1. College of Resources and Environment, Fujian Agriculture and Foresty University, Fuzhou, Fujian 350002, China;
2. Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Foresty University, Fuzhou, Fujian 350002, China;
3. Fujian Province Environmental Monitoring Center, Fuzhou, Fujian 350002, China
关键词:
氮沉降挥发性有机化合物施氮方式马尾松木荷
Keywords:
nitrogen depositionvolatile organic compoundsnitrogen application methodsPinus massonianaSchima superba
分类号:
S714
DOI:
10.13324/j.cnki.jfcf.2020.03.003
摘要:
为了解土壤挥发性有机化合物(VOCs)对氮沉降的响应,本研究以马尾松和木荷幼苗为研究对象,设置3个氮水平(5.6、15.6和20.6 g·m-2·a-1)和两种氮添加方式(土壤施氮和叶面施氮),通过质子转移反应飞行时间质谱仪分析植物土壤VOCs对不同氮水平和氮添加方式的响应。结果表明,马尾松和木荷幼苗根系土壤释放的总VOCs通量为19.50~70.94 pmol·g-1·h-1,以含氧VOCs(乙醛、甲醇和乙烯酮)和含氮VOCs(甲酰胺和丙胺)为主,分别占总VOCs的22.04%~47.71%和3.31%~38.68%。两种氮添加方式均显著地促进马尾松和木荷幼苗根系土壤含氮VOCs释放,这与土壤铵态氮和硝态氮含量显著相关。叶面施氮处理下马尾松根系土壤总VOCs释放显著增加,不同幼苗根系土壤释放的不同种类VOCs对氮水平和氮添加方式的响应不一致。研究结果可为评估土壤VOCs对大气氮沉降增加的响应提供基础数据。
Abstract:
In order to understand the responses of fluxes of soil volatile organic compounds (VOCs) to elevated nitrogen deposition, this study employed proton transfer reaction-time of flight-mass spectrometry (PTR-TOF-MS) to study the responses of soil VOCs to three nitrogen application levels (5.6, 15.6, and 20.6 g·m-2·a-1) and two application methods (soil application of N and foliage application of N) for the root zone soils of two tree species (Pinus massoniana and Schima superba). Results showed that the total VOC emission rates of P. massoniana and S. superba seeding root zone soils ranged from 19.50 to 70.94 pmol·g-1·h-1, with oxygenated VOCs (mainly acetaldehyde, methanol and ethenone), and nitrogenous VOCs (mainly formamide and propylamine) being the species with the largest proportion, which accounted for 22.04%~47.71% and 3.31%~38.68%, respectively. The emission rates for soil nitrogenous VOCs increased significantly with N enrichment for both N application methods and tree species, and the emission rates showed significantly positive correlation with soil NH4+ and NO3- contents. Total VOC emission rates increased significantly with N addition for P. massoniana root zone soil in the FAN treatment, and VOCs from both tree species showed various responses to nitrogen levels and application methods. The results can provide basic data for future evaluation of the potential contribution of soil VOCs to elevated nitrogen deposition.

参考文献/References:

[1] SCHMIDT R,CORDOVEZ V,DE BOER W,et al.Volatile affairs in microbial interactions[J].The ISME Journal,2015,9(11):2 329-2 335.
[2] SCHULZ-BOHM K,MARTíN-SáNCHEZ L,GARBEVA P.Microbial volatiles:small molecules with an important role in Inftra- and Inter- kingdom interactions[J].Frontiers in Microbiology,2017(8):2 484.
[3] AALTONEN H,AALTO J,KOLARI P,et al.Continuous VOC flux measurements on boreal forest floor[J].Plant and Soil,2013,369(1/2):241-256.
[4] PE?ELAS J,ASENSIO D,THOLL D,et al.Biogenic volatile emissions from the soil[J].Plant, Cell & Environment,2014,37(8):1 866-1 891.
[5] MASSALHA H,KORENBLUM E,THOLL D,et al.Small molecules below-ground:the role of specialized metabolites in the rhizosphere[J].The Plant Journal,2017,90(4):788-807.
[6] OWEN S M,CLARK S,POMPE M,et al.Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula[J].FEMS Microbiology Letters,2007,268(1):34-39.
[7] PE?ELAS J,STAUDT M.BVOCs and global change[J].Trends in Plant Science,2010,15(3):133-144.
[8] POTOSNAK M J.Including the interactive effect of elevated CO2 concentration and leaf temperature in global models of isoprene emission[J].Plant, Cell & Environment,2014,37(8):1 723-1 726.
[9] HAQUE M M,KAWAMURA K,KIM Y.Seasonal variations of biogenic secondary organic aerosol tracers in ambient aerosols from Alaska[J].Atmospheric Environment,2016(130):95-104.
[10] SCOTT C E,RAP A,SPRACKLEN D V,et al.The direct and indirect radiative effects of biogenic secondary organic aerosol[J].Atmospheric Chemistry and Physics,2014,14(1):447-470.
[11] SVENDSEN S H,PRIEMé A,VORISKOVA J,et al.Emissions of biogenic volatile organic compounds from arctic shrub litter are coupled with changes in the bacterial community composition[J].Soil Biology and Biochemistry,2018(120):80-90.
[12] LEFF J W,FIERER N.Volatile organic compound (VOC)emissions from soil and litter samples[J].Soil Biology and Biochemistry,2008,40(7):1 629-1 636.
[13] INSAM H,SEEWALD M S A.Volatile organic compounds (VOCs)in soils[J].Biology and Fertility of Soils,2010,46(3):199-213.
[14] XU C K,MO M H,ZHANG L M,et al.Soil volatile fungistasis and volatile fungistatic compounds[J].Soil Biology and Biochemistry,2004,36(12):1 997-2 004.
[15] SCHADE G W,CUSTER T G.OVOC emissions from agricultural soil in northern Germany during the 2003 European heat wave[J].Atmospheric Environment,2004,38(36):6 105-6 114.
[16] SCHADE G W,GOLDSTEIN A H.Plant physiological influences on the fluxes of oxygenated volatile organic compounds from ponderosa pine trees[J].Journal of Geophysical Research:Atmospheres,2002,107(D10):4 082.
[17] LIN C,OWEN S M,PE?ELAS J.Volatile organic compounds in the roots and rhizosphere of Pinus spp.[J].Soil Biology and Biochemistry,2007,39(4):951-960.
[18] LIU X J,ZHANG Y,HAN W X,et al.Enhanced nitrogen deposition over China[J].Nature,2013,494(7 438):459-462.
[19] WORTMAN E,TOMASZEWSKI T,WALDNER P,et al.Atmospheric nitrogen deposition and canopy retention influences on photosynthetic performance at two high nitrogen deposition Swiss forests[J].Tellus Series B:Chemical and Physical Meteorology,2012,64(1):17 216.
[20] 李德军,莫江明,方运霆,等.氮沉降对森林植物的影响[J].生态学报,2003,23(9):1 891-1 900.
[21] HUANG X R,LIU Y F,LI Y Y,et al.Foliage application of nitrogen has less influence on soil microbial biomass and community composition than soil application of nitrogen[J].Journal of Soils and Sediments,2019,19(1):221-231.
[22] 王晖,莫江明,鲁显楷,等.南亚热带森林土壤微生物量碳对氮沉降的响应[J].生态学报,2008,28(2):470-478.
[23] XIONG Q L,PAN K W,ZHANG L,et al.Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai-Tibet Plateau,southwestern China[J].Applied Soil Ecology,2016(101):72-83.
[24] KESSELMEIER J,STAUDT M.Biogenic volatile organic compounds (VOC):an overview on emission,physiology and ecology[J].Journal of Atmospheric Chemistry,1999,33(1):23-88.
[25] 刘双娥,李义勇,方熊,等.不同氮添加量和添加方式对南亚热带4个主要树种幼苗生长的影响[J].植物生态学报,2015,39(10):950-961
[26] LIU J X,ZHANG D Q,ZHOU G Y,et al.CO2 enrichment increases nutrient leaching from model forest ecosystems in subtropical China[J].Biogeosciences,2008,5(6):1 783-1 795.
[27] GREENBERG J P,ASENSIO D,TURNIPSEED A,et al.Contribution of leaf and needle litter to whole ecosystem BVOC fluxes[J].Atmospheric Environment,2012(59):302-311.
[28] MANCUSO S,TAITI C,BAZIHIZINA N,et al.Soil volatile analysis by proton transfer reaction-time of flight mass spectrometry (PTR-TOF-MS)[J].Applied Soil Ecology,2015(86):182-191.
[29] KRAMSH?J M,ALBERS C N,HOLST T,et al.Biogenic volatile release from permafrost thaw is determined by the soil microbial sink[J].Nature Communications,2018,9(1):3 412.
[30] 王卫华,王全九,樊军.原状土与扰动土导气率、导水率与含水率的关系[J].农业工程学报,2008,24(8):25-29.
[31] GAN J,YATES S R,OHR H D,et al.Production of methyl bromide by terrestrial higher plants[J].Geophysical Research Letters,1998,25(19):3 595-3 598.
[32] 张莹.丁烷的协同氧化及丁烷氧化菌分子探针的初步研究[D].北京:中国农业大学,2014.
[33] 王云端,董小军,王茜,等.自然土壤中苯酚降解菌的分离和系统发育分析[J].环境科学,2007,28(3):623-626.
[34] YOO S K,DAY D F.Bacterial metabolism of α- and β-pinene and related monoterpenes by Pseudomonas sp.strain PIN[J]. Process Biochemistry,2002,37(7):739-745.
[35] WHEATLEY R E.The consequences of volatile organic compound mediated bacterial and fungal interactions[J].Antonie van Leeuwenhoek,2002,81(1/2/3/4):357-364.
[36] SEEWALD M S A,SINGER W,KNAPP B A,et al.Substrate-induced volatile organic compound emissions from compost-amended soils[J].Biology and Fertility of Soils,2010,46(4):371-382.
[37] SHARKEY T D,WIBERLEY A E,DONOHUE A R.Isoprene emission from plants:why and how[J].Annals of Botany,2008,101(1):5-18.
[38] SMOLANDER A,KETOLA R A,KOTIAHO T,et al.Volatile monoterpenes in soil atmosphere under birch and conifers:effects on soil N transformations[J].Soil Biology and Biochemistry,2006,38(12):3 436-3 442.

相似文献/References:

[1]荣海,洪伟,吴承祯,等.模拟氮沉降对温郁金叶丛期叶面积形成的影响[J].森林与环境学报,2011,31(01):13.
 [J].,2011,31(03):13.
[2]蔡乾坤,段洪浪,刘文飞,等.氮沉降对杉木林土壤有效氮和磷含量的影响[J].森林与环境学报,2016,36(03):342.[doi:10.13324/j.cnki.jfcf.2016.03.015]
 CAI Qiankun,DUAN Honglang,LIU Wenfei,et al.Impacts of nitrogen deposition on soil available N and P contents in the Chinese fir plantation[J].,2016,36(03):342.[doi:10.13324/j.cnki.jfcf.2016.03.015]
[3]吴旺旺,张丽丽,林达,等.氮沉降对凋落叶分解前期土壤酶活性的影响[J].森林与环境学报,2017,37(02):174.[doi:10.13324/j.cnki.jfcf.2017.02.008]
 WU Wangwang,ZHANG Lili,LIN Da,et al.Effects of simulated nitrogen deposition on soil enzyme activity during early stage of leaf litter decomposition[J].,2017,37(03):174.[doi:10.13324/j.cnki.jfcf.2017.02.008]

备注/Memo

备注/Memo:
收稿日期:2020-03-09;改回日期:2020-04-21。
基金项目:国家自然科学基金项目(41473083;41907274)。
作者简介:黄幸然(1991-),男,博士研究生,从事环境生态学方面研究。Email:huangxingran_demon@163.com。
通讯作者:易志刚(1973-),男,教授,博士,从事痕量气体界面交换、有机污染物生物地球化学循环研究。Email:zgyi@fafu.edu.cn。
更新日期/Last Update: 1900-01-01