[1]陆双飞,陈禹衡,周斯怡,等.西南地区松属乔木对气候变化的响应[J].森林与环境学报,2020,40(05):466-477.[doi:10.13324/j.cnki.jfcf.2020.05.003]
 LU Shuangfei,CHEN Yuheng,ZHOU Siyi,et al.Responses of Pinus species to climate change in southwestern China[J].,2020,40(05):466-477.[doi:10.13324/j.cnki.jfcf.2020.05.003]
点击复制

西南地区松属乔木对气候变化的响应()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
40
期数:
2020年05期
页码:
466-477
栏目:
出版日期:
2020-09-15

文章信息/Info

Title:
Responses of Pinus species to climate change in southwestern China
作者:
陆双飞1 陈禹衡2 周斯怡1 殷晓洁1
1. 西南林业大学林学院, 云南 昆明 650224;
2. 南京林业大学生物与环境学院, 江苏 南京 210037
Author(s):
LU Shuangfei1 CHEN Yuheng2 ZHOU Siyi1 YIN Xiaojie1
1. School of Forestry, Southwest Forestry University, Kunming, Yunnan 650224, China;
2. College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
关键词:
松属乔木地理分布气候变化最大熵模型西南地区
Keywords:
Pinus speciesgeographical distributionclimate changemaximum entropy modelsouthwestern China
分类号:
Q948.5
DOI:
10.13324/j.cnki.jfcf.2020.05.003
摘要:
通过收集中国西南地区12种松属乔木的分布点数据,结合当前及未来(2070年)气候情景数据,基于最大熵模型预测松属乔木潜在地理分布,分析潜在分布区的环境特征,旨在为气候变化下松属乔木资源的保护以及可持续经营提供理论参考。结果表明:模型的受试者工作特征曲线下的面积(AUC)均大于0.8,预测精度达到"很准确"水平。12种松属乔木中,细叶云南松的潜在分布范围最窄,马尾松的分布范围最广。2070年代表性浓度路径4.5(representative concentration pathway 4.5,RCP4.5)情景下,12种松属乔木的适宜区在面积和空间上均发生了不同程度的变化,且整体上呈现向东偏北或西偏北方向扩张的趋势。乔松、思茅松、细叶云南松、云南松、高山松、华山松和油松的适宜分布区总体呈现扩张趋势,而细叶云南松和油松高适宜区面积则减小;巴山松、毛枝五针松、白皮松、华南五针松和马尾松的适宜区呈缩小趋势。8个主导环境因子在松属乔木适宜区内的平均变化范围分别为:年降水量647~2 600 mm,最冷月最低气温-8~10 ℃,气温的季节性358~756,海拔281~3 054 m,等温性25~45,气温日较差6~11 ℃,降水的季节性43~99,适宜区土壤质地主要为轻黏土、粉壤土和砂黏壤土。该结果对松属植物资源的保护、造林区规划以及可持续经营等具有一定指导意义。
Abstract:
Based on the occurrence data of 12 Pinus species in southwestern China and environmental data for current and future (2070) climate scenarios, we modeled the potential geographic distribution of the Pinus species using MaxEnt and analyzed the environmental characteristics of the potential distribution regions. This study aims to provide a theoretical reference for the protection and sustainable management of Pinus species resources under climate change. Results showed that the area under the receiver operating characteristics curve of all 12 Pinus species was more than 0.8, suggesting that the MaxEnt model is highly reliable in simulating geographical distribution. Among the 12 Pinus species, the distribution range of Pinus yunnanensis var. tenuifolia was the narrowest and that of Pinus massoniana was the widest. Under the 2070 RCP4.5 (representative concentration pathway 4.5) climate scenario, the suitable regions of 12 Pinus species have changed to varying degrees in terms of both area and space, and the overall trend expands northeast or northwest. The suitable regions of Pinus wallichiana, Pinus kesiya, Pinus yunnanensis var. tenuifolia, Pinus yunnanensis, Pinus densata, Pinus armandii, and Pinus tabuliformis are generally expanding, while the highly suitable regions of Pinus yunnanensis var. tenuifolia, and Pinus tabuliformis are decreasing. The suitable regions of Pinus tabuliformis var. henryi, Pinus wangii, Pinus bungeana, Pinus kwangtungensis, and Pinus massoniana are decreasing overall. The average variation range of 8 dominant environmental factors in the Pinus species suitable region is 647 mm≤annual precipitation≤2 600 mm, -8 ℃≤minimum temperature of the coldest month≤10 ℃, 358≤temperature seasonality≤756,281 m≤altitude≤3 054 m, 25≤isothermality≤45.6 ℃≤mean temperature diurnal range≤11 ℃, 43≤precipitation seasonality≤99, and the soil texture of the suitable regions are mainly light clay, silt loam, and sandy clay loam. These results offer guiding significance for the protection of Pinus, afforestation planning, and sustainable management.

参考文献/References:

[1] 周广胜,张新时. 全球变化的中国气候-植被分类研究[J]. 植物学报(英文版),1996,38(1):8-17.
[2] REBELO H,TARROSO P,JONES G. Predicted impact of climate change on European bats in relation to their biogeographic patterns[J]. Global Change Biology,2010,16(2):561-576.
[3] 沈永平,王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土,2013,35(5):1068-1076.
[4] SONG Y,JIN L,WANG H. Vegetation changes along the Qinghai-Tibet plateau engineering corridor since 2000 induced by climate change and human activities[J]. Remote Sensing,2018,10(2):95.
[5] DAKHIL M A,XIONG Q,FARAHAT E A,et al. Past and future climatic indicators for distribution patterns and conservation planning of temperate coniferous forests in southwestern China[J]. Ecological Indicators,2019,107:e105559.
[6] 黄健秋,卫志明. 松属树种的组织培养和原生质体培养[J]. 植物学报,1994,11(1):34-42.
[7] 周跃,张军,林锦屏,等. 西南地区松属侧根的强度特征对其防护林固土护坡作用的影响[J]. 生态学杂志,2002,21(6):1-4.
[8] 刘光明,吕永俊,周萍,等. 松属植物的松塔、松子壳药用开发[J]. 大理学院学报,2007,6(12):77-80.
[9] MYERS N,MITTERMEIER R A,MITTERMEIER C G,et al. Biodiversity hotspots for conservation priorities[J]. Nature,2000,403(24):853-858.
[10] 李果,沈泽昊,应俊生,等. 中国裸子植物物种丰富度空间格局与多样性中心[J]. 生物多样性,2009,17(3):272-279.
[11] 沈涛,张霁,申仕康,等.西南地区红花龙胆分布格局模拟与气候变化影响评价[J].应用生态学报,2017,28(8):2499-2508.
[12] 武晓宇,董世魁,刘世梁,等.基于MaxEnt模型的三江源区草地濒危保护植物热点区识别[J].生物多样性,2018,26(2):138-148.
[13] 陈彬杭.西南地区森林生态脆弱性随演替和气候的变化[D].北京:北京林业大学,2019.
[14] 郭润小,白新燕,宝力道,等.中国西南天然林保护工程区森林资源动态变化趋势分析[J].中国林业经济,2019,4(1):132-134.
[15] 应凌霄,刘晔,陈绍田,等.气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟[J].生物多样性,2016,24(4):453-461.
[16] 陈禹衡,吕一维,殷晓洁.气候变化下西南地区12种常见针叶树种适宜分布区预测[J].南京林业大学学报(自然科学版),2019,43(6):113-120.
[17] 陆双飞,殷晓洁,韦晴雯,等.气候变化下西南地区植物功能型的地理分布响应研究[J]. 生态学报,2020,40(1):310-324.
[18] PHILLIPS S J,DUDíK M,SCHAPIRE R E. A maximum entropy approach to species distribution modeling[C]. Banff:Machine Learning,Proceedings of the Twenty-first International Conference (ICML 2004),2004.
[19] PHILLIPS S J,ANDERSON R P,SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling,2006,190(3):231-259.
[20] PHILLIPS S J,DUDíK M. Modeling of species distributions with MaxEnt:new extensions and a comprehensive evaluation[J]. Ecography,2008,31(2):161-175.
[21] 杜超群,袁慧,单华平,等. 湖北省日本落叶松栽培区划[J]. 森林与环境学报,2019,39(3):273-279.
[22] 林志玮,涂伟豪,洪宇,等. 结合多空间特性的保护区功能分区最优化设计[J]. 森林与环境学报,2019,39(3):248-255.
[23] 曹向锋,钱国良,胡白石,等. 采用生态位模型预测黄顶菊在中国的潜在适生区[J]. 应用生态学报,2010,21(12):3063-3069.
[24] HERNANDEZ P A,GRAHAM C H,MASTE L L,et al. The effect of sample size and species characteristics on performance of different species distribution modeling methods[J]. Ecography,2006,29(5):773-785.
[25] MOUTON A M,DE BAETS B,GOETHALS P L. Ecological relevance of performance criteria for species distribution models[J]. Ecological Modelling,2010,221(16):1995-2002.
[26] 殷晓洁,周广胜,隋兴华,等. 辽东栎林潜在地理分布及其主导因子[J]. 林业科学,2013,49(8):10-14.
[27] LIU C,WHITE M,NEWELL G. Selecting thresholds for the prediction of species occurrence with presence-only data[J]. Journal of Biogeography,2013,40(4):778-789.
[28] 孙颖,秦大河,刘洪滨. IPCC第五次评估报告不确定性处理方法的介绍[J]. 气候变化研究进展,2012,8(2):150-153.
[29] 杨志香,周广胜,殷晓洁. 中国兴安落叶松天然林地理分布及其气候适宜性[J]. 生态学杂志,2014,33(6):1429-1436.
[30] 赵怀,宝刘彤,雷加强,等. 古尔班通古特沙漠南部植物群落β多样性及其解释[J]. 草业学报,2010,19(3):29-37.
[31] 李巧燕,王襄平. 长江三峡库区物种多样性的垂直分布格局:气候、几何限制、面积及地形异质性的影响[J]. 生物多样性,2013,21(2):141-152.
[32] CAMILLE P,GARY Y. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature,2003,421(6918):37-42.
[33] ZHANG K,YAO L,MENG J,et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Science of the Total Environment,2018,634:1326-1334.
[34] HUANG Y,JIANG N,SHEN M,et al. Effect of preseason diurnal temperature range on the start of vegetation growing season in the Northern Hemisphere[J]. Ecological Indicators,2020,112:1-9.
[35] RENNE R R,BRADFORD J B,BURKE I C,et al. Soil texture and precipitation seasonality influence plant community structure in North American temperate shrub steppe[J]. Ecology,2019,100(11):e02824.
[36] ZHANG M G,SLIK J W F,MA K P. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China[J]. Scientific Reports,2016,6(1):e22400.
[37] 陈新美,雷渊才,张雄清,等. 样本量对MaxEnt模型预测物种分布精度和稳定性的影响[J]. 林业科学,2012,48(1):53-59.
[38] YANG X Q,KUSHWAHA S P S,SARAN S,et al. Maxent modeling for predicting the potential distribution of medicinal plant,Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering,2013,51(1):83-87.

相似文献/References:

[1]游章湉,陈世品,陈子英,等.闽台裸子植物区系及地理分布格局比较[J].森林与环境学报,2017,37(03):317.[doi:10.13324/j.cnki.jfcf.2017.03.012]
 YOU Zhangtian,CHEN Shipin,CHEN Ziying,et al.Analysis of Fujian and Taiwan gymnosperm flora and geographical distribution[J].,2017,37(05):317.[doi:10.13324/j.cnki.jfcf.2017.03.012]

备注/Memo

备注/Memo:
收稿日期:2020-05-10;改回日期:2020-07-21。
基金项目:国家自然科学基金项目(31700467);西南林业大学博士科研启动基金项目(112003)。
作者简介:陆双飞(1993-),男,硕士研究生,从事植物地理分布研究。Email:shuangfeil@163.com。
通讯作者:殷晓洁(1984-),女,讲师,硕士生导师,从事全球变化下植被的适应性、脆弱性和地理分布响应研究。Email:xjyinanne@163.com。
更新日期/Last Update: 1900-01-01