[1]黄红兰,蔡军火,彭欢,等.毛红椿混交树种选择及其幼龄林生长效应[J].森林与环境学报,2020,40(05):497-504.[doi:10.13324/j.cnki.jfcf.2020.05.006]
 HUANG Honglan,CAI Junhuo,PENG Huan,et al.Selection of tree species mixed with Toona ciliata var. pubescens and their growth effects in young forests[J].,2020,40(05):497-504.[doi:10.13324/j.cnki.jfcf.2020.05.006]
点击复制

毛红椿混交树种选择及其幼龄林生长效应()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
40
期数:
2020年05期
页码:
497-504
栏目:
出版日期:
2020-09-15

文章信息/Info

Title:
Selection of tree species mixed with Toona ciliata var. pubescens and their growth effects in young forests
作者:
黄红兰1 蔡军火23 彭欢1 张露23
1. 江西环境工程职业学院, 江西 赣州 341000;
2. 江西农业大学林学院, 江西 南昌 330045;
3. 江西特色林木资源培育与利用协同创新中心, 江西 南昌 330045
Author(s):
HUANG Honglan1 CAI Junhuo23 PENG Huan1 ZHANG Lu23
1. Jiangxi Environment Engineering Vocatinal College, Ganzhou, Jiangxi 341000, China;
2. College of Forestry, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China;
3. Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, Nanchang, Jiangxi 330045, China
关键词:
毛红椿混交改造混交优化树种生长效应
Keywords:
Toona ciliata var. pubescensmixed transformation modelsmixed optimization of tree speciesgrowth effect
分类号:
S792.99
DOI:
10.13324/j.cnki.jfcf.2020.05.006
摘要:
为探索适合南方林区瘠薄土壤的毛红椿混交改造模式,对改造后的毛红椿纯林(CK)及无患子×毛红椿(SsT)、观光木×毛红椿(MoT)、火力楠×毛红椿(MmT)和壳菜果×毛红椿(MlT)混交改造林进行1~8 a的生长调查,分析比较其林分结构、林地土壤和毛红椿的年生长动态及其生长差异。结果表明:混交改造后,林分结构趋于复杂,林地土壤得到不同程度地改良,改良效果为MoT > MmT > MlT > CK > SsT。不同混交改造林林分幼龄期(4~8 a)的毛红椿生长有不同程度的差异,其胸径和树高生长基本呈"快-慢"的变化趋势,且表现为树高的生长节律优先,MoT和MmT混交改造林分尤为明显。开放科学标识码(OSID码)毛红椿早期耐阴,约在4 a后,混交改造对林分郁闭度产生影响,从而形成较合理的时空格局,并有利于毛红椿大径级材的培育。与CK相比,不同混交改造林分的毛红椿生长有促进、抑制性可能、后期抑制3个层次的生长效应,且随林龄增长均保持一致。其中,MoT和MmT混交改造林分对毛红椿的促进生长效应优,8 a林龄毛红椿的平均胸径、平均树高、单株材积分别比CK提高了19.8%、22.1%、71.8%和25.7%、20.2%、85.1%;抑制性可能层次为SsT混交改造林分,毛红椿的生长均低于CK,其平均胸径、平均树高和单株材积分别较CK低5.9%、15.4%和24.8%;后期抑制层次的是MlT混交改造林分,造林后的前期(1~4 a)保持CK的正常生长速度,5~8 a生长最慢,混交效果极差。
Abstract:
The aim of this study was to investigate mixed transformation models of Toona ciliata and other broad-leaved tree species suitable for bare soil in mountainous areas within the southern forests. A newly established pure forest of T. ciliata (CK) was used as a control, while four types of mixed forest of Michelia odora×T. ciliata (MoT), Michelia macclurei×T. ciliata (MmT), Mytilaria laosensis×T. ciliata (MlT), and Sapindus saponaria×T. ciliata (SsT) were tested. We investigated forest structure, forest soil conditions, and the growth status of T. ciliata in all the forests from 1 to 8 years, and analyzed and compared the growth change in T. ciliata and its growth differences under the mixed transformation models.The results showed that all the forests developed complex structures after mixed transformation. The forest soil quality showed different levels of improvement, and the order of degrees of improvement was MoT > MmT > MlT > CK > SsT. The T. ciliata pure forest and the mixed transformation forests at different ages (4-8 years) showed different degrees of growth. The indexes of diameter at breast height (DBH) and stand height growth showed a "fast-slow" trend, and also showed the priority of their high growth rhythms. These characteristics of T. ciliata in mixed forests of MoT and MmT were particularly obvious. Toona ciliata is early shade-tolerant and affects the stand density of forest after reaching 4 years of age in the mixed transformation models, which have formed a more balanced pattern of space and time, and is suitable for the cultivation of large-diameter wood. Compared with pure T. ciliate forest, there were three levels (promotion characteristics, possible inhibition, and late inhibition) of the growth effect of mixed forests on T. ciliata, which were consistent with the forest age. Both the MoT and MmT transformation forests were highly effective in promoting the growth of T. ciliata. Compared with the pure T. ciliata forest, the average DBH, average stand height, and volume per plant of 8-year-old T. ciliata in MoT and MmT transformation forests increased by 19.8%, 22.1%, and 71.8% and 25.7%, 20.2%, and 85.1%, respectively. The SsT transformation forest appeared to inhibit the growth of T. ciliata,It was that T. ciliata occupied the main canopy in the SsT transformation forest, but it was lower than the growth performanceof pure forest of T. ciliata.The average DBH, average tree height, and individual average volume of T. ciliata in SsT transformation forest were as low as 5.9%, 15.4%, and 24.8%, respectively. In MlT forest, at third level, T. ciliata maintained normal growth rate in the first 4 years after afforestation, but became the slowest of all models from 5 to 8 years, and the mixing effect was the lowest of all the forests.

参考文献/References:

[1] 沈国舫,翟明普.混交林研究[M].北京:中国林业出版社,1997:289.
[2] 盛炜彤.关于我国人工林长期生产力的保持[J].林业科学研究,2018,31(1):1-14.
[3] 刘雨晖.杉木细叶青冈混交林生物量及林下植物多样性[J].亚热带农业研究,2018,14(2):104-109.
[4] 夏丽丹,于姣妲,邓玲玲,等.杉木人工林地力衰退研究进展[J].世界林业研究,2018,31(2):37-42.
[5] 洪永辉,林能庆,黄钦忠,等.米老排马尾松混交林生长分析及混交模式选择[J].防护林科技,2018(1):1-5.
[6] 黄金桃,叶功富,田有圳,等.凹叶厚朴材药两用林混交造林效果研究[J].西北林学院学报,2003,18(2):44-46.
[7] 官九红.福建光泽杉木毛红椿混交林生长状况与土壤性质[J].安徽农学通报,2012,18(18):86-89.
[8] 吴道念,李松海,杨紫龙,等.广西南宁阔叶同龄复层混交模式的研究[J].山东林业科技,2016,46(5):44-47.
[9] 蔡勇.杉木火力楠混交林和杉木纯林的生物量及分布格局研究[J]. 福建林业科技,2007,34(2):48-52.
[10] 邱贵云.马尾松与几种阔叶树种混交的初步研究[J].福建林业科技,2006,33(2):136-139.
[11] 刘子斐.同乐林场米老排林分生长特性与效益评估的研究[D].长沙:中南林业科技大学,2017.
[12] 王海华.增城区乡土树种人工林生长表现及生态效益评价[D].广州:华南农业大学,2016.
[13] 郝建,莫慧华,麻静,等.西南桦与红椎混交造林模式评价[J].西北林学院学报,2016,31(2):135-139.
[14] 王希群,马履一,林平,等.北京低山油松林、侧柏林、栎林块状镶嵌混交经营模式的研究[J].西北林学院学报,2007,22(2):164-168.
[15] 黄雅丽,田琪,秦光华,等.黄河三角洲刺槐白蜡混交对土壤细菌群落结构及多样性的影响[J].生态学报,2018,38(11):3859-3867.
[16] 徐玉伟,戴其生,张梅林.红楝子人工造林试验初报[J].林业科技开发,1997(4):40-41.
[17] 黄红兰,廖忠民,张露.毛红椿施肥技术研究进展[J].福建林业科技,2011,38(3):183-186.
[18] 花焜福.杉木毛红椿混交林生长效应研究[J].福建农业科技,2006(4):75-77.
[19] 范建华.马尾松毛红椿混交林生长效果和土壤肥力研究[J].防护林科技,2007(3):21-23.
[20] 柴雄,毛玉明.造林密度对毛红椿等阔叶用材树种早期生长的影响[J].浙江林业科技,2009,29(6):17-21.
[21] KOUTIKA L S,EPRON D,BOUILLET J P,et al.Changes in N and C concentrations,soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil[J].Plant and Soil,2014,379(1/2):205-216.
[22] GODINHO TD,CALDEIRA MVW,CALIMAN JP,et al.Biomass,macronutrients and organic carbon in the litter in a section of submontane seasonal semideciduous forest,ES[J].Scientia Forestalis,2013,41(97):131-144.
[23] 黄红兰.九连山自然保护区毛红椿天然种群生态学特征[D].南昌:江西农业大学,2012.
[24] 余林,杜强,叶金山,等.毛红椿8年生人工林生长过程研究[J].南方林业科学,2016,44(6):30-33.
[25] 徐海宁,李滋仁,叶金山,等.毛红椿天然林生长特性研究[J].江西林业科技,2012(5):1-3.
[26] HECTOR A,PHILIPSON C,SANER P,et al.The Sabah biodiversity experiment:a long-term test of the role of tree diversity in restoring tropical forest structure and functioning[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2011,366(1582):3303-3315.
[27] GERMON A,GUERRINI I A,BORDRON B,et al.Consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by fine-roots down to a depth of 17 m[J].Plant and Soil,2018,424(1):203-220.
[28] DELCURTO T,DAVIS N G,WYFFELS S A,et al.The influence of forest series and stand age on individual plant species nutritional quality in a mixed-conifer forest[J]. Translational Animal Science,2019,3(S1):1728-1732.

备注/Memo

备注/Memo:
收稿日期:2020-04-29;改回日期:2020-06-11。
基金项目:江西省科技支撑重点项目(20151BBF60019);国家自然科学基金项目(31860202)。
作者简介:黄红兰(1970-),女,副教授,从事森林培育研究。Email:2004honglan@163.com。
通讯作者:张露(1964-),女,教授,从事森林培育研究。Email:zhlu856@163.com。
更新日期/Last Update: 1900-01-01