[1]欧阳园丽,吴小刚,林小凡,等.九连山自然保护区土壤有机碳时空变异的耦合效应[J].森林与环境学报,2020,40(06):561-568.[doi:10.13324/j.cnki.jfcf.2020.06.001]
 OUYANG Yuanli,WU Xiaogang,LIN Xiaofan,et al.Coupling effect of spatial-temporal variation in soil organic carbon in the Jiulianshan National Nature Reserve[J].,2020,40(06):561-568.[doi:10.13324/j.cnki.jfcf.2020.06.001]
点击复制

九连山自然保护区土壤有机碳时空变异的耦合效应()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
40卷
期数:
2020年06期
页码:
561-568
栏目:
出版日期:
2020-11-15

文章信息/Info

Title:
Coupling effect of spatial-temporal variation in soil organic carbon in the Jiulianshan National Nature Reserve
作者:
欧阳园丽12 吴小刚3 林小凡1 陈伏生14 熊启慧1 卜文圣14
1. 江西农业大学林学院, 江西 南昌 330045;
2. 鄱阳湖流域森林生态系统保护与修复国家林业和草原局重点实验室, 江西 南昌 330045;
3. 九连山森林生态系统国家定位观测研究站, 江西 南昌 330045;
4. 九连山国家级自然保护区管理局, 江西 龙南 341700
Author(s):
OUYANG Yuanli12 WU Xiaogang3 LIN Xiaofan1 CHEN Fusheng14 XIONG Qihui1 BU Wensheng14
1. College of Forestry, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China;
2. Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Nanchang, Jiangxi 330045, China;
3. Jiulianshan National Observation and Research Station of Chinese Forest Ecosystem, Nanchang, Jiangxi 330045, China;
4. Jiangxi Provincial Management Bureau for Jiulianshan National Nature Reserve, Longnan, Jiangxi 341700, China
关键词:
海拔土壤有机碳土壤层次植被类型碳储量耦合效应九连山
Keywords:
altitudesoil organic carbonsoil layervegetation typecarbon storagecoupling effectJiulianshan
分类号:
S712.4
DOI:
10.13324/j.cnki.jfcf.2020.06.001
摘要:
土壤有机碳动态的研究有助于评估陆地生态系统的固碳增汇功能,但土壤有机碳随海拔和土层的空间变异与随发育时间的互作即空间与时间变异耦合效应少有报道,因而研究不同海拔梯度下各土壤层次有机碳的时空变异对评估亚热带森林生态系统的固碳效应有重要意义。以九连山主峰黄牛石不同海拔的典型森林、灌丛和草甸土壤剖面为对象,对比分析自然保护区设立初(1982年)至2015年间各土壤层次(0~10 cm,10~20 cm,20~40 cm)有机碳含量及碳储量的变化,探讨封山育林33 a后九连山有机碳变化及其影响因素。33 a前后有机碳含量和碳储量变化在0~40 cm土层内均随着海拔的升高而呈现线性增大的趋势,随海拔的升高,土壤有机碳含量和碳储量变化的累积速率随土层加深而逐渐增大,即20~40 cm土层的有机碳含量和碳储量变化累积速率最大;杜鹃林0~10 cm和10~20 cm土层的有机碳含量变化及0~10 cm土层的有机碳储量变化显著地高于人工林,高山草甸和杜鹃林20~40 cm土层的有机碳含量和碳储量变化显著高于其他植被类型,高山草甸20~40 cm土层的有机碳含量变化显著地高于0~10 cm。混合线性模型结果表明各土壤层次有机碳变化不受年份的显著影响,但均受到海拔的显著影响,植被类型对0~10 cm土壤有机碳的影响强于10~20 cm和20~40 cm。高海拔地区的杜鹃林、高山草甸的有机碳变化可能是导致各土壤层次有机碳33 a变异的主要原因。在全球气候变暖背景下,高海拔地区杜鹃林、高山草甸在33 a后由于温度上升导致其光合作用和生长速度提高,碳固定增加,因此气候变化和植被的生长过程可能对土壤有机碳的源汇动态产生显著影响。
Abstract:
Understanding the organic carbon dynamics of soil is helpful when assessing carbon sequestration and accumulation in terrestrial ecosystems; however, the coupling effect between the spatial and temporal variations in soil organic carbon across altitudes and the soil layers is rarely reported. Therefore, this study aims to evaluate the carbon sequestration of a subtropical forest ecosystem. Soil profiles were taken from forests, shrubs, and meadows at different altitudes on Huangniushi Mountain, the tallest peak in the Jiulianshan National Nature Reserve. In 1982, the surrounding hills were enclosed for natural afforestation. Therefore, the organic carbon content and storage among different soil layers (0-10 cm, 10-20 cm, 20-40 cm) were analyzed to explore the changes over time. In the entire soil range (0-40 cm), the organic carbon content and storage increased linearly with altitude. The organic carbon accumulation rate gradually increased with increasing altitude and soil depth (i.e., the 20-40 cm layer had the fastest accumulation rate). Changes in the organic carbon content were significantly higher in the Rhododendron forests than in the artificial forests in the 0-10 cm and 10-20 cm soil layers, and the change in organic carbon storage between the Rhododendron forest and the artificial forests was significantly higher in the 0-10 cm soil layer. The greatest changes in organic carbon content and storage were observed between the alpine meadow and Rhododendron forest in the 20-40 cm soil layers, and the carbon storage change in the alpine meadow 20-40 cm soil layer was significantly higher than that in the 0-10 cm layer. The mixed linear model results showed that time did not influence the organic carbon changes in the soil layers, but altitude had a significant effect. Vegetation type also had a significant effect on the 0-10 cm soil layer. The organic carbon changes in the Rhododendron forest and the alpine meadow at high altitudes may be the reason for the overall changes in the soil layers. Despite global climate change, the Rhododendron forest and the alpine meadow at high altitudes have significantly improved their growth rates, photosynthesis, and carbon sequestration. Therefore, climate change and plant growth may have a significant impact on the source and sink dynamics of soil organic carbon.

参考文献/References:

[1] GREGG J S,ANDRES R J, MARLAND G. China:emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production[J]. Geophysical Research Letters, 2008, 35(8):135-157.
[2] 吴雅琼,刘国华,傅伯杰,等.森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子[J].生态学报,2007, 27(11):4678-4685.
[3] 聂阳意,王海华, 李晓杰, 等. 武夷山低海拔和高海拔森林土壤有机碳的矿化特征[J]. 应用生态学报, 2018, 29(3):748-756.
[4] JACKSON R B, LAJTHA K, CROW S E, et al. The ecology of soil carbon:pools, vulnerabilities, and biotic and abiotic controls[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48(1):419-445.
[5] SOKOL N W, KUEBBING S E, KARLSEN A E, et al. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon[J]. The New Phytologist, 2019,221(1):233-246.
[6] JAVAID M D. Organic carbon stocks in mountain grassland soils of northwestern Kashmir Himalaya:spatial distribution and effects of altitude, plant diversity and land use[J]. Carbon Management, 2019, 10(2):149-162.
[7] YANG Y, FANG J, MA W H, et al. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s[J]. Global Change Biology, 2010, 16(11):3036-3047.
[8] 宋娅丽,康峰峰,韩海荣,等.自然因子对中国森林土壤碳储量的影响分析[J].世界林业研究,2015,28(3):6-12.
[9] 刘亚兰, 郭汝清, 孙书存. 中国亚热带山地植被垂直带分布对气候季节性的响应[J]. 生态学报, 2010, 30(14):3912-3922.
[10] PAN Y D, BIRDSEV R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.
[11] 丁咸庆, 马慧静, 朱晓龙, 等. 大围山不同海拔森林土壤有机碳垂直分布特征[J]. 水土保持学报, 2015, 29(2):258-262.
[12] WIESMEIER M, URBANSKI L, HOBLEY E, et al. Soil organic carbon storage as a key function of soils:areview of drivers and indicators at various scales[J]. Geoderma, 2019, 333(1):149-162.
[13] HOU Y H, HE K Y, CHEN Y, et al.Changes of soil organic matter stability along altitudinal gradients in Tibetan alpine grassland[J]. Plant and Soil, 2019,4(3):1-20.
[14] DU B, KANG H, PUMPANEN J, et al. Soil organic carbon stock and chemical composition along an altitude gradient in the Lushan Mountain, subtropical China[J]. Ecological Research, 2014, 29(3):433-439.
[15] 毕珍,石辉,许五弟,等.四川盆地森林土壤的有机碳储量及其空间分布特征[J].水土保持研究,2009, 16(5):83-87.
[16] GERMAN D P, MARCELO K R B, STONE M M, et al. The michaelis-menten kinetics of soil extracellular enzymes in response to temperature:a cross-latitudinal study[J]. Global Change Biology, 2012, 18(4):1468-1479.
[17] 张厚喜,林丛,程浩,等.武夷山不同海拔梯度毛竹林土壤有机碳特征及影响因素[J].土壤,2019,51(4):821-828.
[18] JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2):423-436.
[19] SUBASHREE K, DAR JAVID A, SUNDARAPANDIAN S. Variation in soil organic carbon stock with forest type in tropical forest of Kanyakumari Wildlife Sanctuary, Western Ghats, India[J]. Environmental Monitoring and Assessment, 2019, 191(11):690-706.
[20] 张参参, 吴小刚, 刘斌, 等. 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2):19-28.
[21] 邸月宝, 王辉民, 马泽清, 等. 亚热带森林生态系统不同重建方式下碳储量及其分配格局[J]. 科学通报, 2012, 57(17):1553-1561.
[22] 刘开树, 孙文峦, 吴文辉. 九连山土壤的发生类型及其肥力性状的探讨[J]. 江西农业大学学报, 1983,14(1):43-50.
[23] 全国农业分析标准化技术委员会. 土壤有机质测定法:GB9834-1988[M].北京:中国国家标准出版社,1989:259-262.
[24] 杜有新, 吴从建, 周赛霞, 等. 庐山不同海拔森林土壤有机碳密度及分布特征[J]. 应用生态学报, 2011, 22(7):1675-1681.
[25] NALAGAWA S, SCHIELZETH H. A general and simple method for obtaining R2 from generalized linear mixed-effects models[J]. Methods in Ecology and Evolution, 2013,4(2):133-142.
[26] 张彦军, 郁耀闯, 牛俊杰, 等. 秦岭太白山北坡土壤有机碳储量的海拔梯度格局研究[J]. 生态学报, 2020,40(2):629-639.
[27] 朱凌宇, 潘剑君, 张威. 祁连山不同海拔土壤有机碳库及分解特征研究[J].环境科学,2013, 34(2):262-269.
[28] TSUI C C, TSAI C C, CHEN Z S. Soil organic carbon stocks in relation to elevation gradients in volcanic ash soils of Taiwan[J]. Geoderma, 2013, 209(11):119-127.
[29] ROSA M, MARIA A N. Elevation gradients:microbial indicators of climate change[J]. Frontiers in Microbiology, 2019, 10(10):2405.
[30] LONGBOTTOM T L, TOWNSEND S A, OWEN L A, et al. Climatic and topographic controls on soil organic matter storage and dynamics in the Indian Himalaya:potential carbon cycle-climate change feedbacks[J]. Catena, 2014, 119(8):125-135.
[31] WIESMEIER M, PRIETZEL J, BARTHOLD F, et al. Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria) implications for carbon sequestration[J]. Forest Ecology and Management, 2013, 295(5):162-172.
[32] VESTERDAL L,CLARKE N,SIGURDSSON B D, et al. Do tree species influence soil carbon stocks in temperate and boreal forests[J]. Forest Ecology and Management, 2013,309(1):4-18.
[33] ROUSK J,FREY S D. Revisiting the hypothesis that fungal to bacterial dominance characterizes turnover of soil organic matter and nutrients[J]. Ecological Monographs,2015,85(3):457-472.
[34] 周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
[35] HOBLEY E, WILSON B, WILKIE A, et al. Drivers of soil organic carbon storage and vertical distribution in Eastern Australia[J]. Plant and Soil, 2015, 390(1/2):111-127.
[36] HU Y L,ZENG D H,MA X Q,et al. Root rather than leaf litter input drives soil carbon sequestration after afforestation on a marginal cropland[J]. Forest Ecology and Management, 2016, 362(11):38-45.
[37] GRUNEBERG E, ZICHE D, WELLBROCK N, et al. Organic carbon stocks and sequestration rates of forest soils in Germany[J]. Global Change Biology, 2014, 20(8):2644-2662.
[38] WAN Q, ZHU G, GUO H, et al. Influence of vegetation coverage and climate environment on soil organic carbon in the Qilian Mountains[J]. Scientific Reports, 2019, 9(1):17623.
[39] LIU Z P, SHAO M A, WANG Y Q. Effects of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China[J]. Agriculture, Ecosystems and Environment,2011,142(3/4):184-194.
[40] DIXON R K, SOLOMON A M, BROWN S A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144):185-190.

相似文献/References:

[1]艾尼瓦尔·吐米尔,阿不都拉·阿巴斯.托木尔峰自然保护区朽木生地衣物种分布特征[J].森林与环境学报,2017,37(04):465.[doi:10.13324/j.cnki.jfcf.2017.04.015]
 ANWAR Tumur,ABDULLA Abbas.Dead wood lichen distribution pattern in Tomur Peak National Nature Reserve[J].,2017,37(06):465.[doi:10.13324/j.cnki.jfcf.2017.04.015]
[2]王飞,王永元,杨萌萌,等.干旱河谷草本植物随海拔变化的物种多样性[J].森林与环境学报,2017,37(04):471.[doi:10.13324/j.cnki.jfcf.2017.04.016]
 WANG Fei,WANG Yongyuan,YANG Mengmeng,et al.Biodiversity of herbaceous plants along altitude gradient in the arid valley[J].,2017,37(06):471.[doi:10.13324/j.cnki.jfcf.2017.04.016]
[3]程浩,张厚喜,黄智军,等.武夷山不同海拔高度土壤有机碳含量变化特征[J].森林与环境学报,2018,38(02):135.[doi:10.13324/j.cnki.jfcf.2018.02.002]
 CHENG Hao,ZHANG Houxi,HUANG Zhijun,et al.Variations of soil organic carbon content along an altitudinal gradient in Wuyi Mountain[J].,2018,38(06):135.[doi:10.13324/j.cnki.jfcf.2018.02.002]
[4]吴炜,项文化,勾蒙蒙,等.中亚热带3种次生林生态系统服务权衡与协同[J].森林与环境学报,2019,39(03):256.[doi:10.13324/j.cnki.jfcf.2019.03.005]
 WU Wei,XIANG Wenhua,GOU Mengmeng,et al.Trade-off and synergy between ecosystem services in three secondary forests in the mid-subtropical area of Southern China[J].,2019,39(06):256.[doi:10.13324/j.cnki.jfcf.2019.03.005]
[5]景建生,刘子琦,罗鼎,等.喀斯特洼地土壤有机碳分布特征及影响因素[J].森林与环境学报,2020,40(02):133.[doi:10.13324/j.cnki.jfcf.2020.02.004]
 JING Jiansheng,LIU Ziqi,LUO Ding,et al.Distribution characteristics and influencing factors of soil organic carbon in karst depression[J].,2020,40(06):133.[doi:10.13324/j.cnki.jfcf.2020.02.004]

备注/Memo

备注/Memo:
收稿日期:2020-06-15;改回日期:2020-07-30。
基金项目:中国国家留学基金项目(201908360227);国家定位观测研究站运行补助项目(江西九连山森林生态系统)(2019132056)。
作者简介:欧阳园丽(1994-),女,硕士研究生,从事森林生态研究。Email:ouyangyuanli10@163.com。
通讯作者:卜文圣(1983-),男,助理研究员,博士,从事群落结构与动态研究。Email:bws2007@163.com。
更新日期/Last Update: 1900-01-01