[1]王丽洁,冯钰,周雯星,等.不同绿化植物对城市土壤腐殖质特征的影响[J].森林与环境学报,2020,40(06):569-578.[doi:10.13324/j.cnki.jfcf.2020.06.002]
 WANG Lijie,FENG Yu,ZHOU Wenxing,et al.Effect of different greening plants on the humus characteristics of urban soil[J].,2020,40(06):569-578.[doi:10.13324/j.cnki.jfcf.2020.06.002]
点击复制

不同绿化植物对城市土壤腐殖质特征的影响()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
40卷
期数:
2020年06期
页码:
569-578
栏目:
出版日期:
2020-11-15

文章信息/Info

Title:
Effect of different greening plants on the humus characteristics of urban soil
作者:
王丽洁1 冯钰1 周雯星1 张晓曦12
1. 延安大学生命科学学院, 陕西 延安 716000;
2. 延安大学陕西省红枣重点实验室, 陕西 延安 716000
Author(s):
WANG Lijie1 FENG Yu1 ZHOU Wenxing1 ZHANG Xiaoxi12
1. College of Life Sciences, Yan’an University, Yan’an, Shaanxi 716000, China;
2. Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, Shaanxi 716000, China
关键词:
土壤腐殖质含量速效养分含量酶活性腐殖质品质分异特征绿化植物
Keywords:
soilhumus contentavailable nutrient contentenzymes activityhumus qualitydissimilation characteristicsgreening plants
分类号:
S718.5
DOI:
10.13324/j.cnki.jfcf.2020.06.002
摘要:
为合理利用绿化植物改善城市土壤肥力,提高土壤腐殖质含量和品质,以常用绿化应用形式下,北方地区普遍使用的25种绿化植物栽植区的土壤为研究对象,测定其土壤腐殖质组分含量、速效养分含量、pH值和4种酶活性,据此分析土壤腐殖质含量、结构的分异特征及其与土壤化学和生物学性质的关系。结果表明:25种绿化植物生长区土壤中总腐殖质含量为8.48~23.75 g·kg-1,其中,旱柳和刺柏生长区的土壤具有较高的总腐殖质含量(分别为23.75和23.30 g·kg-1),且各组分含量均相对较高;月季生长区土壤的腐殖质品质较高(腐殖化程度为0.47、胡富比为2.26、胡敏酸与腐殖酸比值为0.69)。在满足实际绿化需求的基础上,可考虑优先配置旱柳、刺柏和月季,以提高城市土壤腐殖质含量或改善其品质。土壤总腐殖质(特别是胡敏素)含量与铵态氮、有效磷和有效钾含量以及蔗糖酶和过氧化氢酶活性呈显著正相关,与pH值呈显著负相关。腐殖化程度则与铵态氮、有效磷、有效钾含量和蔗糖酶活性呈显著负相关。在城市绿地管护过程中,可以通过适当施肥和调节土壤酸碱度的方式影响土壤腐殖质的形成与转化,改善不同绿化植物生长区的土壤性状。
Abstract:
In order to make rational use of greening plants to improve urban soil fertility, and improve the content and quality of humus, soils from the planting area of 25 species of greening plants in northern China were collected for analysis. From this, the contents of humus components, available nutrients, pH value, and the activity of four enzymes were detected. Accordingly, the differentiation characteristics of the contents and structure of humus, as well as the relationship between humus and other related soil biochemical properties were analyzed. The results showed that the humus content in the soil from the surrounding areas of 25 greening plants was between 8.48 g·kg-1 and 23.75 g·kg-1. In general, among the tested soils, the soil from the surrounding areas of Salix matsudana and Juniperus formosana, had the highest total humus content(23.75 g·kg-1 and 23.30 g·kg-1, respectively) and highest relevant component content. Furthermore, soil from the surrounding area of Rosa chinensis yielded favorable humus quality, with a humification degree of 0.47, a ratio of humic acid to fulvic acid of 2.26, and a ratio of humic acid to total humic acids of 0.69. On the basis of meeting the needs of actual greening work, it could be beneficial to introduce these plants at the same time to improve the content and quality of urban soil humus. The content of total humus in soil, especially humin, was significant and positively correlated with the corresponding ammonium nitrogen, available phosphorus, and available potassium content. The content of total humus was also found to be positively related to the activities of sucrase and catalase. At the same time, the content of total humus was significant and negatively correlated with the soil pH value. Moreover, the degree of humification was significant and negatively correlated with the content of ammonium nitrogen, available phosphorus, and available potassium, as well as the activity of sucrase. In urban green space management, proper fertilization and soil pH adjustment may help regulate the formation and transformation of soil humus, thus improving soil properties in different areas of plant growth in gardens.

参考文献/References:

[1] XU Y F, WANG K L, ZHOU Q H, et al. Effects of humus on the mobility of arsenic in tailing soil and the thiol-modification of humus[J]. Chemosphere, 2020, 259:127403.
[2] 卫芯宇,杨玉莲,吴福忠,等.冻融环境下亚高山森林凋落叶添加对土壤腐殖质动态的影响[J].应用生态学报,2019,30(7):2257-2266.
[3] 郭小夏,刘洪涛,常志州,等.有机废物好氧发酵腐殖质形成机理及农学效应研究进展[J].生态与农村环境学报,2018,34(6):489-498.
[4] 陈晓东,吴景贵,范围,等.不同有机物料对原生盐碱地土壤腐殖质结合形态及组成的影响[J].水土保持学报,2019,33(1):200-205.
[5] MI W H, SUN Y, GAO Q, et al. Changes in humus carbon fractions in paddy soil given different organic amendments and mineral fertilizers[J]. Soil and Tillage Research, 2019, 195:104421.
[6] ZHANG X X, LIU Z W, LIU X B, et al. Relationship between soil humus dissimilation, soil biological and chemical properties, and leaf litter characteristics in pure forests[J]. Emirates Journal of Food and Agriculture, 2016, 28(9):616-624.
[7] 邴塬皓,刘增文,TRUNG L N,等.陕北黄土丘陵区牧草枯落物对针叶纯林土壤极化的修复效应[J].土壤学报,2014,51(4):897-905.
[8] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
[9] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
[10] 马洁怡,赵友朋,张金池,等.凤阳山不同林分土壤腐殖质特征及影响因素[J].东北林业大学学报,2020,48(1):62-67.
[11] 周红,何忠俊,肖蒙,等.横断山脉纵谷区不同林型土壤胡敏素组分特征[J].水土保持研究,2020,27(2):48-54.
[12] PHILLIPS L A, SCHEFE C R, FRIDMAN M, et al. Organic nitrogen cycling microbial communities are abundant in a dry Australian agricultural soil[J]. Soil Biology and Biochemistry, 2015, 86:201-211.
[13] TRAP J, BUREAU F, PEREZ G, et al. PLS-regressions highlight litter quality as the major predictor of humus form shift along forest maturation[J]. Soil Biology and Biochemistry, 2013, 57:969-971.
[14] 李开萍,刘子琦,李渊,等.喀斯特高原峡谷区花椒林土壤质量评价[J].森林与环境学报,2020,40(4):391-397.
[15] 吴旺旺,张丽丽,林达,等.氮沉降对凋落叶分解前期土壤酶活性的影响[J].森林与环境学报,2017,37(2):174-180.
[16] COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The microbial efficiency-matrix stabilization(MEMS) framework integrates plant litter decomposition with soil organic matter stabilization:do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4):988-995.
[17] WU J Q, ZHAO Y, QI H S, et al. Identifying the key factors that affect the formation of humic substance during different materials composting[J]. Bioresource Technology, 2017, 244:1193-1196.
[18] 窦森,王帅.不同微生物对形成不同腐殖质组分的差异性研究进展[J].吉林农业大学学报,2011,33(2):119-125.
[19] 丛高,张志丹,张晋京,等.长白山不同林型土壤有机碳特征[J].水土保持学报,2019,33(3):179-184.
[20] 刘群,庄丽燕,杨万勤,等.川西亚高山两种树木不同径级根系腐殖化过程中胡敏酸和富里酸的累积特征[J].植物生态学报,2017,41(12):1251-1261.
[21] 倪祥银,杨万勤,徐李亚,等.雪被斑块对高山森林凋落叶腐殖化过程中胡敏酸和富里酸累积的影响[J].土壤学报,2014,51(5):1138-1152.
[22] 李慧敏.不同微生物对土壤胡敏酸和胡敏素数量和结构特征的影响[D].长春:吉林农业大学,2012.
[23] MI C H, LIU Z W, LI Q, et al. Effect of litter decomposition on soil polarization in three typical planted pure coniferous forests in Loess Plateau, China[J]. International Journal of Agriculture and Biology, 2013, 15(4):687-693.
[24] 杨晔.木质素降解酶研究进展[J].农业工程,2014,4(4):48-51.
[25] 任玉连,曹乾斌,李聪,等.南滚河自然保护区森林群落特征与土壤性质之间关联分析[J].西北林学院学报,2019,34(3):50-59.

相似文献/References:

[1]宋光桃,周国英,罗秋良,等.油茶林土壤放线菌的分离及其拮抗油茶炭疽病菌的筛选[J].森林与环境学报,2009,29(04):297.
 [J].,2009,29(06):297.
[2]叶宏萌,郑茂钟,李国平,等.武夷岩茶主产区土壤及茶叶微量元素分布特征[J].森林与环境学报,2016,36(04):423.[doi:10.13324/j.cnki.jfcf.2016.04.007]
 YE Hongmeng,ZHENG Maozhong,LI Guoping,et al.Distribution characteristics of trace elements in the soils and tea leaves in Wuyi Yantea Provenance[J].,2016,36(06):423.[doi:10.13324/j.cnki.jfcf.2016.04.007]
[3]吴旺旺,张丽丽,林达,等.氮沉降对凋落叶分解前期土壤酶活性的影响[J].森林与环境学报,2017,37(02):174.[doi:10.13324/j.cnki.jfcf.2017.02.008]
 WU Wangwang,ZHANG Lili,LIN Da,et al.Effects of simulated nitrogen deposition on soil enzyme activity during early stage of leaf litter decomposition[J].,2017,37(06):174.[doi:10.13324/j.cnki.jfcf.2017.02.008]
[4]杜洋文,曾祥福,邓先珍,等.不同桐药套种模式对土壤理化性质的影响[J].森林与环境学报,2017,37(02):181.[doi:10.13324/j.cnki.jfcf.2017.02.009]
 DU Yangwen,ZENG Xiangfu,DENG Xianzhen,et al.Effects of different interplanting patterns on soil physical and chemical characters of Vernicia fordii[J].,2017,37(06):181.[doi:10.13324/j.cnki.jfcf.2017.02.009]
[5]白旭明,伍建榕.新肥菇原生地土壤有机碳氮测定条件优化[J].森林与环境学报,2017,37(03):360.[doi:10.13324/j.cnki.jfcf.2017.03.019]
 BAI Xuming,WU Jianrong.Optimization of determination conditions of soil organic carbon and nitrogen in the habitat of Agaricus sinodeliciosus[J].,2017,37(06):360.[doi:10.13324/j.cnki.jfcf.2017.03.019]
[6]阿依加马力·克然木,玉米提·哈力克.阿克苏市绿地土壤重金属含量特征及污染评价[J].森林与环境学报,2018,38(01):91.[doi:10.13324/j.cnki.jfcf.2018.01.015]
 KERAM Ayjamal,HALIK Ü,müt.Assessment of heavy metal concentration characteristics and pollution risk in Aksu City[J].,2018,38(06):91.[doi:10.13324/j.cnki.jfcf.2018.01.015]
[7]向云西,陈胜魁,潘萍,等.马尾松叶片-凋落物-土壤的碳氮磷化学计量特征[J].森林与环境学报,2019,39(02):120.[doi:10.13324/j.cnki.jfcf.2019.02.002]
 XIANG Yunxi,CHEN Shengkui,PAN Ping,et al.Stoichiometric traits of C, N and P of leaf-litter-soil system of Pinus massoniana forest[J].,2019,39(06):120.[doi:10.13324/j.cnki.jfcf.2019.02.002]
[8]邵学新,杨慧,刘旭川,等.杭州湾湿地鹭鸟栖息地土壤养分累积特征[J].森林与环境学报,2019,39(04):404.[doi:10.13324/j.cnki.jfcf.2019.04.012]
 SHAO Xuexin,YANG Hui,LIU Xuchuan,et al.Nutrient accumulation characteristics of soil in egret habitat in Hangzhou Bay Wetland[J].,2019,39(06):404.[doi:10.13324/j.cnki.jfcf.2019.04.012]
[9]叶江华,张奇,林生,等.大红袍茶树生长及鲜叶品质与土壤特性的相关性[J].森林与环境学报,2019,39(05):488.[doi:10.13324/j.cnki.jfcf.2019.05.007]
 YE Jianghua,ZHANG Qi,LIN Sheng,et al.Correlation of growth and fresh leaf quality of Dahongpao tea tree with soil characteristics[J].,2019,39(06):488.[doi:10.13324/j.cnki.jfcf.2019.05.007]
[10]薛飞,龙翠玲,廖全兰,等.喀斯特森林凋落物对土壤养分及土壤酶的影响[J].森林与环境学报,2020,40(05):449.[doi:10.13324/j.cnki.jfcf.2020.05.001]
 XUE Fei,LONG Cuiling,LIAO Quanlan,et al.An analysis of litter, soil, stoichiometry, and soil enzymes in karst forest[J].,2020,40(06):449.[doi:10.13324/j.cnki.jfcf.2020.05.001]

备注/Memo

备注/Memo:
收稿日期:2020-08-11;改回日期:2020-09-09。
基金项目:国家自然科学基金项目(31800370);延安大学科研计划项目(YDY2020-34);研究生教育创新计划项目(YCX2020071)。
作者简介:王丽洁(1996-),女,硕士研究生,从事林草生态研究。Email:wanglj_92@163.com。
通讯作者:张晓曦(1990-),男,副教授,从事森林生态和污染生态研究。Email:zhangxiaoxi712100@gmail.com。
更新日期/Last Update: 1900-01-01