[1]刘静,赵铭臻,王利艳,等.间伐保留密度和套种对杉木中龄林材种结构的影响[J].森林与环境学报,2021,41(06):593-600.[doi:10.13324/j.cnki.jfcf.2021.06.005]
 LIU Jing,ZHAO Mingzhen,WANG Liyan,et al.Effects of thinning reserve density and interplanting on timber assortment structure of a middle-aged Chinese fir forest[J].,2021,41(06):593-600.[doi:10.13324/j.cnki.jfcf.2021.06.005]
点击复制

间伐保留密度和套种对杉木中龄林材种结构的影响()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
41卷
期数:
2021年06期
页码:
593-600
栏目:
出版日期:
2021-11-13

文章信息/Info

Title:
Effects of thinning reserve density and interplanting on timber assortment structure of a middle-aged Chinese fir forest
作者:
刘静12 赵铭臻1 王利艳1 陈志云3 林开敏12 李明12
1. 福建农林大学林学院, 福建 福州 350002;
2. 国家林业和草原局杉木工程技术研究中心, 福建 福州 350002;
3. 福建省顺昌埔上国有林场, 福建 顺昌 353200
Author(s):
LIU Jing12 ZHAO Mingzhen1 WANG Liyan1 CHEN Zhiyun3 LIN Kaimin12 LI Ming12
1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;
2. Chinese Fir Engineering Technology Research Center of National Forestry and Grassland Administration, Fuzhou, Fujian 350002, China;
3. Fujian Pushang National Forest Farm, Shunchang, Fujian 353200, China
关键词:
杉木间伐中龄林材种结构密度
Keywords:
Chinese firthinningmiddle-aged foresttimber assortmentdensity
分类号:
S753.5
DOI:
10.13324/j.cnki.jfcf.2021.06.005
摘要:
密度调控是杉木大径材培育的关键环节,为研究杉木中龄林大径材近自然培育的合理间伐保留密度,在福建省顺昌埔上国有林场11年生杉木人工林进行间伐后套种木荷、观光木、火力楠和楠木4种阔叶树试验,分析间伐对杉木中龄林生长和材种结构以及对阔叶树生长的影响。试验设置间伐保留密度为900、1 200、1 875株·hm-2(不间伐),每个处理3个重复,共9块样地,间伐后全部套种4种阔叶树。2017—2020年连年生长调查结果表明,随着间伐保留密度的增加,杉木平均胸径、平均树高、平均单株材积及其增量、中径材出材率、大径材出材率都明显下降,林分蓄积量、小径材出材量和出材率、中径材出材量明显上升;4种套种阔叶树的平均树高和平均地径随着间伐保留密度的增加而减小。总体上,间伐保留密度为1 875株·hm-2时适宜培育杉木小径材和中径材,能够获得较高的林分蓄积量;在900株·hm-2时适宜于近自然经营下杉木中龄林大径材培育。
Abstract:
Density control is a key silvicultural measure to cultivate large-diameter timber in Chinese fir plantations. To identify the optimal thinning retention density for this purpose, interplanting broad-leaved trees after thinning was carried out in an 11-year-old Chinese fir plantation at the Pushang State Forest Farm in Shunchang, Fujian. The effect of thinning on the stand timber assortment structure of this middle-aged forest under the close-to-nature management was analyzed. The thinning retention densities were set at 900, 1 200, and 1 875 tree·hm-2(without thinning). Three replicates for each treatment were designed and a total of 9 plots were established. The broad-leaved trees were interplanted after thinning. The results of annual growth investigated from 2017 to 2020 showed that increased retention density of thinning caused significant decreases in the diameter at breast height and tree height, individual plant volume and its increment, yield rate of medium-diameter lumber, and yield rate of large-diameter lumber. Stand volume, small-diameter timber yield, and medium-diameter timber yield increased significantly. Height and ground diameter of the 4 broad-leaved trees that were interplanted decreased with the increase in the retention density of thinning. In general, a thinning retention density of 1 875 tree·hm-2 was suitable for cultivating small-diameter and medium-diameter wood of Chinese fir, and to obtain a higher stand volume. Conversely, a thinning retention density of 900 tree·hm-2 was suitable for the middle-aged Chinese fir under near-natural management and large diameter timber cultivation conditions.

参考文献/References:

[1] 卢立华, 农友, 李华, 等.保留密度对杉木人工林生长和生物量及经济效益的影响[J].应用生态学报, 2020, 31(3):717-724.
[2] 郭光智, 段爱国, 张建国, 等.南亚热带杉木人工林材种结构长期立地与密度效应[J].林业科学研究, 2020, 33(1):35-43.
[3] BIRDSEY R. Data gaps for monitoring forest carbon in the united states:an inventory perspective[J].Environmental Management, 2004, 33(1):1-8.
[4] JAND R, LINDNDNER M, VESTERDA L, et al. How strongly can forest management influence soil carbon sequestration[J]. Geoderma, 2007, 137(3/4):253-268.
[5] ZHOU D, ZHAO S Q, LIU S, et al.A meta-analysis on the impacts of partial cutting on forest structure and carbon storage[J].Biogeosciences Discussions, 2013, 10(1):787-813.
[6] WOODAL C, MILES P, VISSAGE J.Determining maximum stand density index in mixed species stands forstrategic-scale stocking assessments[J].Forest Ecology and Management, 2005, 216(1/2/3):367-377.
[7] 中国树木志编委会. 中国主要树种造林技术[M].北京:中国林业出版社, 1981.
[8] 黄健翔, 曾火根, 欧阳秋桂, 等.抚育间伐对杉木中幼龄人工林林分生长质量及效益的影响[J].江西林业科技, 2011(4):15-17.
[9] 魏晓晓, 陈爱玲, 王士亚, 等.杉木连栽林土壤微生物碳源利用比较[J].应用与环境生物学报, 2016, 22(3):518-523.
[10] 陈日升, 康文星, 吕中诚, 等.杉木林物质生产中养分利用特征分析[J].植物营养与肥料学报, 2019, 25(9):1588-1599.
[11] 郑鸣鸣, 任正标, 王友良, 等.间伐强度对杉木中龄林生长和结构的影响[J]. 森林与环境学报, 2020, 40(4):369-376.
[12] 邓伦秀.杉木人工林林分密度效应及材种结构规律研究[D].北京:中国林业科学研究院, 2010.
[13] 刘景芳, 童书振.杉木林经营新技术[J].世界林业研究, 1996, 9(专辑):36-44.
[14] 曾冀. 广西大青山杉木马尾松人工林近自然化改造试验研究[D].北京:中国林业科学研究院, 2017.
[15] 黄贤松, 吴承祯, 洪伟, 等.2种杉木人工林密度与立木生物量的研究[J].福建林学院学报, 2011, 31(2):102-105.
[16] 许冠军, 郑宏, 林开敏, 等.间伐密度管理模式对杉木大径材生长的影响[J].福建农林大学学报(自然科学版), 2019, 48(6):753-759.
[17] 张鹏, 王新杰, 韩金, 等.间伐对杉木人工林生长的短期影响[J].东北林业大学学报, 2016, 44(2):6-10, 14.
[18] 龚固堂, 牛牧, 慕长龙, 等.间伐强度对柏木人工林生长及林下植物的影响[J].林业科学, 2015, 51(4):8-15.
[19] CHEN K Y, ZHANG H R, LEI X D, et al. Effect of thinning on spatial structure of spruce-fir mixed broadleaf-conifer forest base on crop tree management[J]. Forest Research, 2017, 30(5):718-726.
[20] 孙冬婧. 间伐和套种阔叶树对杉木人工林生物量、物种多样性及地力的影响[D].南宁:广西大学, 2011.
[21] 范辉华, 李莹, 汤行昊, 等.不同密度杉木林分下套种闽楠的生长分析[J].森林与环境学报, 2020, 40(2):184-189.
[22] PACHAS A, SHELTON H M, LAMBRIDES C J, et al. Effect of tree density on competition between Leucaena leucocephala and Chloris gayana using a nelder wheel trial:I. aboveground interactions[J]. Crop and Pasture Science, 2018, 69(4):419-429.
[23] 熊光康, 厉月桥, 熊有强, 等.低密度造林对杉木生长、形质和材种结构的影响[J].南京林业大学学报(自然科学版), 2021, 45(3):165-173.
[24] 徐雪蕾. 间伐对杉木人工林的生长调控作用研究[D].北京:北京林业大学, 2020.
[25] 叶功富, 涂育合, 林瑞荣, 等.杉木人工林不同密度管理定向培育大径材[J].北华大学学报(自然科学版), 2005, 6(6):544-549.
[26] 黄木易, 梁燕芳, 苏福聪, 等.桉树不同间伐强度下套种乡土树种对林分生长和土壤理化性质的影响[J].中南林业科技大学学报, 2021, 41(6):81-90.

相似文献/References:

[1]林 晗,吴承祯,陈 辉,等.杉木—千年桐人工混交林种内种间竞争关系分析[J].森林与环境学报,2014,34(04):316.
[2]赵中华,刘爱琴,吴鹏飞,等.低磷胁迫下杉木针叶蛋白的提取与表达差异分析[J].森林与环境学报,2014,34(03):203.
[3]李林源.23年生杉木第2代种子园自由授粉子代测定林分析及选择[J].森林与环境学报,2013,33(04):351.
 LI Lin-yuan.Analysis and selection for 23 years old open-pollinated progeny test of the 2nd generation seed orchard in Cunninghamia lanceolata[J].,2013,33(06):351.
[4]郑金兴,熊德成,黄锦学,等.中龄和老龄杉木人工林凋落物量及养分归还[J].森林与环境学报,2013,33(01):18.
 ZHENG Jin-xing,XIONG De-cheng,HUANG Jin-xue,et al.Litter production and nutrient return in 2 plantations of young and old Cunninghamia lanceolata[J].,2013,33(06):18.
[5]汪婷,张莉莉,胡永颜,等.不同耐铝型杉木优良家系早期筛选[J].森林与环境学报,2013,33(02):124.
 WANG Ting,ZHANG Li-li,HU Yong-yan,et al.Selection of different types of aluminum-tolerance Cunninghamia lanceolata superior families[J].,2013,33(06):124.
[6]陈奶莲,汪攀,吴鹏飞,等.匀强电场对杉木外植体芽诱导的影响[J].森林与环境学报,2015,35(01):13.[doi:10.13324/j.cnki.jfcf.2015.01.003]
[7]刘圣恩,林开敏,郑文辉,等.杉木研究科技文献计量分析[J].森林与环境学报,2015,35(01):19.[doi:10.13324/j.cnki.jfcf.2015.01.004]
[8]何琳琳,吴鹏飞,张云鹏,等.杉木人工林细根不同根序形态和碳氮含量的比较[J].森林与环境学报,2015,35(02):112.[doi:DOI: 10.13324/j.cnki.jfcf.2015.02.003]
[9]陈奶莲,汪攀,吴鹏飞,等.不同杉木半同胞家系种子生物学特性的差异[J].森林与环境学报,2015,35(03):230.[doi:10.13324/j.cnki.jfcf.2015.03.008]
[10]王青天.闽南山地杉木马尾松木荷混交林培育效果研究[J].森林与环境学报,2012,32(04):321.
 [J].,2012,32(06):321.

备注/Memo

备注/Memo:
收稿日期:2021-07-01;改回日期:2021-09-09。
基金项目:国家重点研发计划项目"杉木高效培育技术研究"(2016YFD0600301);国家自然科学基金项目(31971674);人工林可持续经营福建省高校工程技术研究中心经费(PTJH18009)。
作者简介:刘静(1995-),女,硕士研究生,从事杉木培育研究。Email:781864623@qq.com。
通讯作者:李明(1986-),男,副教授,从事林木种质资源和杉木培育研究。Email:limingly@126.com。
更新日期/Last Update: 1900-01-01