[1]邓目丽,蒋馥根,孙华,等.神木市植被覆盖度时空动态变化分析[J].森林与环境学报,2021,41(06):611-619.[doi:10.13324/j.cnki.jfcf.2021.06.007]
 DENG Muli,JIANG Fugen,SUN Hua,et al.Spatial-temporal dynamic change analysis of vegetation coverage in Shenmu City[J].,2021,41(06):611-619.[doi:10.13324/j.cnki.jfcf.2021.06.007]
点击复制

神木市植被覆盖度时空动态变化分析()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
41卷
期数:
2021年06期
页码:
611-619
栏目:
出版日期:
2021-11-13

文章信息/Info

Title:
Spatial-temporal dynamic change analysis of vegetation coverage in Shenmu City
作者:
邓目丽12 蒋馥根12 孙华12 龙依12 易静12
1. 中南林业科技大学林业遥感信息工程研究中心, 湖南 长沙 410004;
2. 林业遥感大数据与生态安全湖南省重点实验室, 湖南 长沙 410004
Author(s):
DENG Muli12 JIANG Fugen12 SUN Hua12 LONG Yi12 YI Jing12
1. Research Center of Forestry Remote Sensing and Information Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China;
2. Key Laboratory of Forestry Remote Sensing Based Big Data and Ecological Security for Hunan Province, Changsha, Hunan 410004, China
关键词:
植被覆盖度归一化植被指数-干枯燃料指数像元三分模型谷歌地球引擎Landsat神木市
Keywords:
vegetation coveragenormalized difference vegetation index-dead fuel indextrichotomy pixel modelGoogle Earth EngineLandsatShenmu City
分类号:
S758.51
DOI:
10.13324/j.cnki.jfcf.2021.06.007
摘要:
为了明确陕西省神木市长时间尺度植被覆盖度变化规律及其驱动因素,通过谷歌地球引擎(GEE)平台获取陕西省神木市2000—2020年植被生长旺盛期(7—9月)的陆地卫星(Landsat)遥感影像,利用归一化植被指数-干枯燃料指数(NDVI-DFI)像元三分模型得到21期神木市光合植被覆盖度(fPV)、非光合植被覆盖度(fNPV)和裸土覆盖度(fBS)的合成结果。通过趋势分析法分析神木市21 a的fPV动态变化,结合年降水量、年平均气温等气象数据及神木市年国内生产总值(GDP)和年原煤产量等社会经济数据分析fPV变化的驱动因素。结果表明:2000—2020年神木市植被覆盖度显著增加,fPVfNPV分别以年平均3.86%和0.36%的速率增长,高植被覆盖度区域主要集中在东部和南部地区;光合植被退化区域、无变化区域和增加区域的面积分别占神木市总面积的10.2%、0.8%和89.0%,fPV增加较快的区域主要集中于中部、东部和南部,西部和西北部的小部分地区植被有退化现象;年降水量、年GDP和年原煤产量与神木市fPV均表现为显著正相关(P<0.05),表明降水量和经济发展能在一定程度促进植被覆盖度增加,而气温对植被状况改善影响较小。
Abstract:
To clarify the change rules and driving factors of vegetation coverage in the long-time scale of Shenmu City, Landsat remote sensing images of Shenmu City from 2000 to 2020 were obtained using the Google Earth Engine(GEE) platform. The NDVI-DFI model was used to obtain the synthesis results of photosynthetic vegetation coverage(fPV), non-photosynthetic vegetation coverage(fNPV), and bare soil coverage(fBS) for 21 years in Shenmu City. The dynamic changes in fPV in Shenmu City over 21 years were analyzed using the trend analysis method, and the driving factors of fPV change were analyzed using meteorological data, such as annual precipitation and annual average temperature, and socio-economic data, such as annual gross domestic product(GDP) and annual raw coal production in Shenmu City. The results showed the following:from 2000 to 2020, the vegetation coverage in Shenmu City increased significantly, and fPV and fNPV increased at an annual average rate of 3.86% and 0.36%, respectively. High vegetation coverage areas were mainly concentrated in the eastern and southern regions. The photosynthetic vegetation degradation area, no change area, and increased area accounted for 10.2%, 0.8%, and 89.0% of the total area of Shenmu City, respectively. The regions with rapid increases in fPV are mainly concentrated in the central, eastern, and southern regions, and vegetation degradation occurs in a small part of the western and northwestern regions. Annual precipitation, annual GDP, and annual raw coal production were significantly positively correlated with the fPV of Shenmu City(P<0.05), indicating that precipitation and economic development can promote an increase in vegetation coverage to a certain extent, whereas temperature has little effect on the improvement of vegetation.

参考文献/References:

[1] 余玉洋, 王银苹, 秦奋, 等.河南省植被覆盖指数变化及其对气候的响应[J].森林与环境学报, 2019, 39(3):280-286.
[2] 张含玉, 方怒放, 史志华.黄土高原植被覆盖时空变化及其对气候因子的响应[J].生态学报, 2016, 36(13):3960-3968.
[3] 苏艳琴, 赖日文, 闫琦, 等.植被覆盖度提取及景观格局分析[J].森林与环境学报, 2018, 38(2):164-170.
[4] 孙康慧, 曾晓东, 李芳.中国生态脆弱区叶面积指数变化的主导气象因子研究[J].自然资源学报, 2021, 36(7):1873-1892.
[5] 姬翠翠, 贾永红, 李晓松, 等.线性/非线性光谱混合模型估算白刺灌丛植被覆盖度[J].遥感学报, 2016, 20(6):1402-1412.
[6] 宋清洁, 崔霞, 张瑶瑶, 等.基于小型无人机与MODIS数据的草地植被覆盖度研究:以甘南州为例[J].草业科学, 2017, 34(1):40-50.
[7] 祝聪, 彭文甫, 张丽芳, 等.2006-2016年岷江上游植被覆盖度时空变化及驱动力[J].生态学报, 2019, 39(5):1583-1594.
[8] 杨婷婷, 郭福涛, 王文辉, 等.福建长汀红壤区植被覆盖度变化趋势分析[J].森林与环境学报, 2016, 36(1):15-21.
[9] 柴国奇, 王静璞, 王光镇, 等.基于MODIS数据的典型草原非光合植被覆盖度估算[J].国土资源遥感, 2019, 31(3):234-241.
[10] GUERSCHMAN J P, HILL M J, RENZULLO L J, et al. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors[J]. Remote Sensing of Environment, 2009, 113(5):928-945.
[11] 王光镇, 王静璞, 邹学勇, 等.基于像元三分模型的锡林郭勒草原光合植被和非光合植被覆盖度估算[J].生态学报, 2017, 37(17):5722-5731.
[12] 唐梦迎, 丁建丽, 夏楠, 等.博尔塔拉蒙古自治州植被覆盖度估算[J].测绘科学, 2019, 44(7):74-81.
[13] 文琦, 施琳娜, 丁宝萍.煤炭资源富集区生态补偿模式探讨:以陕西神木县为例[J].生态经济, 2018, 34(2):190-194.
[14] CAO X, CHEN J, MATSUSHITA B, et al. Developing a MODIS-based index to discriminate dead fuel from photosynthetic vegetation and soil background in the Asian steppe area[J]. International Journal of Remote Sensing, 2010, 31(6):1589-1604.
[15] 侯春华, 李富平, 冯一帆, 等.基于NDVI-DFI的矿业开发密集区地表热环境分异效应分析[J].农业工程学报, 2020, 36(3):160-168.
[16] 王震, 闫文德, 刘曙光, 等.基于MODIS数据的湖南省2001-2013年植被覆盖指数时空变化研究[J].中南林业科技大学学报, 2016, 36(11):41-46.
[17] 马锋, 卓静, 何慧娟, 等.陕西省榆林市植被生态演变及其驱动机制[J].水土保持通报, 2020, 40(5):257-261.
[18] GONG P, LIU H, ZHANG M N, et al. Stable classification with limited sample:transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6):370-373.
[19] 王涛, 杨梅焕, 徐澜.陕西榆林地区植被退化与沙漠化趋势分析[J].西北师范大学学报(自然科学版), 2017, 53(2):104-111.
[20] 石玉琼, 郑亚云, 李团胜.榆林地区2000-2014年NDVI时空变化[J].生态学杂志, 2018, 37(1):211-218.
[21] 雷思君, 孙华, 刘华, 等.Landsat 8时间序列影像支持下的农田防护林提取方法研究[J].中南林业科技大学学报, 2020, 40(4):57-63.
[22] 马思远.黄土高原植被覆盖时空变化特征及驱动力分析:以河龙间西北片为例[D].郑州:河南农业大学, 2019.
[23] DAUGHTRY C S T, HUNT JR E R. Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover[J]. Remote Sensing of Environment, 2008, 112(4):1647-1657.

相似文献/References:

[1]杨婷婷,郭福涛,王文辉,等.福建长汀红壤区植被覆盖度变化趋势分析[J].森林与环境学报,2016,36(01):15.[doi:10.13324/j.cnki.jfcf.2016.01.003]
 YANG Tingting,GUO Futao,WANG Wenhui,et al.Dynamics of vegetation coverage in the red soil area of Changting, Fujian, China[J].,2016,36(06):15.[doi:10.13324/j.cnki.jfcf.2016.01.003]
[2]周梦遥,何东进,覃德华,等.1995—2015年厦门市土地利用变化对植被覆盖度的影响[J].森林与环境学报,2017,37(04):440.[doi:10.13324/j.cnki.jfcf.2017.04.011]
 ZHOU Mengyao,HE Dongjin,QIN Dehua,et al.Impacts of land use change on vegetation coverage in Xiamen City from 1995 to 2015[J].,2017,37(06):440.[doi:10.13324/j.cnki.jfcf.2017.04.011]
[3]苏艳琴,赖日文,闫琦,等.植被覆盖度提取及景观格局分析[J].森林与环境学报,2018,38(02):164.[doi:10.13324/j.cnki.jfcf.2018.02.006]
 SU Yanqin,LAI Riwen,YAN Qi,et al.Extraction of vegetation coverage and analysis of landscape pattern[J].,2018,38(06):164.[doi:10.13324/j.cnki.jfcf.2018.02.006]
[4]余玉洋,王银苹,秦奋,等.河南省植被覆盖指数变化及其对气候的响应[J].森林与环境学报,2019,39(03):280.[doi:10.13324/j.cnki.jfcf.2019.03.008]
 YU Yuyang,WANG Yinping,QIN Fen,et al.Vegetation index change and its response to climate in Henan Province[J].,2019,39(06):280.[doi:10.13324/j.cnki.jfcf.2019.03.008]

备注/Memo

备注/Memo:
收稿日期:2021-08-05;改回日期:2021-10-01。
基金项目:国家重点研发计划项目"三北防护林体系建设重大生态工程生态效益监测评估"(2017YFC0506502);国家林业局荒漠化监测专项(101-9899);湖南省教育厅科学研究重点项目(17A225)。
作者简介:邓目丽(1998-),女,硕士研究生,从事林业遥感研究。Email:20201200083@csuft.edu.cn。
通讯作者:孙华(1979-),男,教授,从事林业遥感和地理信息系统研究。Email:sunhua@csuft.edu.cn。
更新日期/Last Update: 1900-01-01