[1]周吓星,范宏玥,童文瑄,等.硅烷用量对竹原纤维增强复合材料性能的影响[J].森林与环境学报,2021,41(06):659-666.[doi:10.13324/j.cnki.jfcf.2021.06.013]
 ZHOU Xiaxing,FAN Hongyue,TONG Wenxuan,et al.Effect of silane content on properties of bamboo fibre reinforced high density polyethylene composites[J].,2021,41(06):659-666.[doi:10.13324/j.cnki.jfcf.2021.06.013]
点击复制

硅烷用量对竹原纤维增强复合材料性能的影响()
分享到:

《森林与环境学报》[ISSN:2096-0018/CN:35-1327/S]

卷:
41卷
期数:
2021年06期
页码:
659-666
栏目:
出版日期:
2021-11-13

文章信息/Info

Title:
Effect of silane content on properties of bamboo fibre reinforced high density polyethylene composites
作者:
周吓星12 范宏玥1 童文瑄1 陈礼辉12
1. 福建农林大学材料工程学院, 福建 福州 350002;
2. 植物纤维功能材料国家林业和草原局重点实验室, 福建 福州 350002
Author(s):
ZHOU Xiaxing12 FAN Hongyue1 TONG Wenxuan1 CHEN Lihui12
1. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;
2. National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350002, China
关键词:
竹原纤维竹纤维增强复合材料界面改性硅烷聚乙烯
Keywords:
bamboo fiberbamboo fiber reinforced compositesinterface modificationsilanepolyethylene
分类号:
TB332
DOI:
10.13324/j.cnki.jfcf.2021.06.013
摘要:
为明确改性剂用量对复合材料力学和热学性能的影响,以化学机械法制备的高长径比毛竹竹原纤维为增强相,采用γ-氨丙基三乙氧基硅烷(KH550)为偶联剂,热压制备45%竹原纤维/高密度聚乙烯(HDPE)复合材料,用环境扫描电镜(ESEM)、傅里叶红外光谱仪(FTIR)、X射线光谱仪(XPS)、X射线衍射仪(XRD)对改性竹原纤维和复合材料进行界面分析。结果表明,随着KH550用量增加,复合材料的力学强度呈现先增强后减弱的趋势,当KH550用量为1%时,复合材料的力学性能较佳,与未改性的复合材料相比,其弯曲强度、弯曲模量、拉伸强度和冲击强度分别提高了13.8%、21.8%、28.1%和24.5%,但其热稳定性略微下降。ESEM、FTIR和XPS的分析结果表明,改性竹原纤维表面极性降低,KH550与竹原纤维的羟基发生化学反应,复合材料的界面相容性增强;改性后纤维的结晶度下降,纤维大分子链柔顺性增强,竹原纤维和塑料基体之间的界面结合增强,而改性复合材料的结晶度升高,刚性增强。
Abstract:
In order to improve the comprehensive utilization rate and added value of bamboo product, the 45% bamboo fibre reinforced high density polyethylene(HDPE) composites using moso bamboo fibre with length to diameter ratio of 285.7 prepared by chemical-mechanical methods as reinforce phase and γ-aminopropyltriethoxy silane(KH550) as coupling agent were prepared by hot press molding. The interface analysis of modified bamboo fiber and its composite was investigated by using environmental scanning electronic microscopy(ESEM), Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), and X-ray diffraction(XRD). The effects of the KH550 content on the mechanical and thermal properties of composites were also studied. The results showed that the composites mechanical strengths increased first and then decreased with an increase of KH550 amount, and the optimal dosage of KH550 was 1%, for the bending strength, bending modulus, tensile strength, and impact strength of the modified composite were enhanced by 13.8%, 21.8%, 28.1%, and 24.5%, respectively, compared with the untreated one; but the thermal stability slightly decreased. Combined with ESEM, FTIR and XPS results, it was manifested that the polarity of the modified bamboo fiber surface decreased, and KH550 reacted with the hydroxyl group of bamboo fiber, and thus the enhanced composite interfacial compatibility was observed. XRD results revealed that the crystallinity of the modified fiber decreased, and the mutual binding between the modified bamboo fiber and PE matrix increased due to the increased flexibility of the bamboo fiber macromolecular chain; while the crystallinity of the modified composite increased.

参考文献/References:

[1] 李玉敏, 冯鹏飞.基于第九次全国森林资源清查的中国竹资源分析[J].世界竹藤通讯, 2019, 17(6):45-48.
[2] 周吓星, 洪国新, 王明光, 等.竹粉/废旧聚乙烯复合材料的性能[J].森林与环境学报, 2019, 39(2):208-213.
[3] TAKAGI H, ICHIHARA Y.Effect of fiber length on mechanical properties of "green" composites using a starch-based resin and short bamboo fibers[J].JSME International Journal Series A, 2004, 47(4):551-555.
[4] 叶翠仙, 陈月琴, 邓邵平, 等.热压工艺对木塑复合板表面性能及稳定性的影响[J].森林与环境学报, 2018, 38(3):272-276.
[5] AKINYEMI A B, OMONIYI E T, ONUZULIKE G.Effect of microwave assisted alkali pretreatment and other pretreatment methods on some properties of bamboo fibre reinforced cement composites[J].Construction and Building Materials, 2020, 245:118405.
[6] MOHIT H, SELVAN V A M.A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites[J].Composite Interfaces, 2018, 25(5/6/7):629-667.
[7] RAO J P, ZHOU Y H, FAN M Z.Revealing the interface structure and bonding mechanism of coupling agent treated WPC[J].Polymers, 2018, 10(3):266.
[8] LIU W D, CHEN T T, XIE T S, et al.Oxygen plasma treatment of bamboo fibers (BF) and its effects on the static and dynamic mechanical properties of BF-unsaturated polyester composites[J].Holzforschung, 2015, 69(4):449-455.
[9] ZHANG W P, YAO X, KHANAL S, et al.A novel surface treatment for bamboo flour and its effect on the dimensional stability and mechanical properties of high density polyethylene/bamboo flour composites[J].Construction and Building Materials, 2018, 186:1220-1227.
[10] ZHOU X X, YU Y, CHEN L H.Effects of zirconaluminate coupling agent on mechanical properties, rheological behavior and thermal stability of bamboo powder/polypropylene foaming composites[J].European Journal of Wood and Wood Products, 2015, 73(2):199-207.
[11] 于学领, 宋剑斌, 杨文斌, 等.KH-550含量对茶梗粉/HDPE性能的影响[J].森林与环境学报, 2015, 35(1):92-96.
[12] 范宏玥, 陈礼辉, 苗庆显, 等.毛竹竹原纤维的制备及其表征[J].林业机械与木工设备, 2020, 48(5):37-41.
[13] 中国石油和化学工业协会.塑料弯曲性能的测定:GB/T 9341-2008[S].北京:中国标准出版社, 2008.
[14] 中国建筑材料工业协会.纤维增强塑料拉伸性能试验方法:GB/T 1447-2005[S].北京:中国标准出版社, 2005.
[15] 中国石油和化学工业协会.塑料简支梁冲击性能的测定第1部分:非仪器化冲击试验:GB/T 1043.1-2008[S].北京:中国标准出版社, 2008.
[16] 全国人造板标准化技术委员会.木塑地板:GB/T 24508-2009[S].北京:中国标准出版社, 2009.
[17] WANG Q T, ZHANG Y, LIANG W K, et al.Effect of silane treatment on mechanical properties and thermal behavior of bamboo fibers reinforced polypropylene composites[J].Journal of Engineered Fibers and Fabrics, 2020, 15:1-10.
[18] LIEW F K, HAMDAN S, RAHMAN M R, et al.Thermo-mechanical properties of jute/bamboo/polyethylene hybrid composites:the combined effects of silane coupling agent and copolymer[J].Polymer Composites, 2020, 41(11):4830-4841.
[19] HAN X B, CAO Z L, WANG R Y, et al.Effect of silane coupling agent modified zeolite warm mix additives on properties of asphalt[J].Construction and Building Materials, 2020, 259:119713.
[20] DONG J Q, ZHOU W R, SU Y H, et al.Enhanced mechanical, thermal, and barrier properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/montmorillonite nanocomposites using silane coupling agent[J].Polymer Composites, 2020, 41(11):4538-4549.
[21] 王凡非, 冯启明, 王维清, 等.硅烷偶联剂KH550对超细石英粉的改性[J].材料导报, 2014, 28(18):70-73.
[22] 邸明伟, 高振华.生物质材料现代分析技术[M].北京:化学工业出版社, 2010.
[23] 楚杰, 张军华, 路海东.不同化学及热处理条件下竹材结构特性分析[J].农业工程学报, 2016, 32(10):309-314.
[24] 王新鹏, 陈双俊, 张军.热空气老化对LDPE/POE共混物结晶行为和力学性能的影响[J].高分子材料科学与工程, 2010, 26(2):87-90.

备注/Memo

备注/Memo:
收稿日期:2021-08-16;改回日期:2021-10-08。
基金项目:“十三五”国家重点研发计划项目(2019YFC1905903);国家重点研发计划项目(2017YFD0600802)。
作者简介:周吓星(1987-),女,副教授,从事生物质复合材料研究。Email:star11110818@163.com。
通讯作者:陈礼辉(1966-),男,教授,从事植物资源利用与新材料研究。Email:lihuichen@263.net。
更新日期/Last Update: 1900-01-01